Zhengru Zhang
Orcid: 0000-0001-6753-0653
According to our database1,
Zhengru Zhang
authored at least 21 papers
between 2011 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
A Structure-preserving Implicit Exponential Time Differencing Scheme for Maxwell-Ampère Nernst-Planck Model.
J. Sci. Comput., November, 2024
A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck (PNP) system.
J. Comput. Appl. Math., 2024
A uniquely solvable and positivity-preserving finite difference scheme for the Flory-Huggins-Cahn-Hilliard equation with dynamical boundary condition.
CoRR, 2024
2023
Second order stabilized semi-implicit scheme for the Cahn-Hilliard model with dynamic boundary conditions.
J. Comput. Appl. Math., August, 2023
A decoupled finite element scheme for simulating the dynamics of red blood cells in an L-shaped cavity.
Comput. Math. Appl., June, 2023
An adaptive BDF2 implicit time-stepping method for the no-slope-selection epitaxial thin film model.
Comput. Appl. Math., April, 2023
Convergence analysis of a positivity-preserving numerical scheme for the Cahn-Hilliard-Stokes system with Flory-Huggins energy potential.
Math. Comput., 2023
2022
High order accurate in time, fourth order finite difference schemes for the harmonic mapping flow.
J. Comput. Appl. Math., 2022
Optimal rate convergence analysis of a numerical scheme for the ternary Cahn-Hilliard system with a Flory-Huggins-deGennes energy potential.
J. Comput. Appl. Math., 2022
2021
Structure-Preserving, Energy Stable Numerical Schemes for a Liquid Thin Film Coarsening Model.
SIAM J. Sci. Comput., 2021
An Energy Stable Finite Element Scheme for the Three-Component Cahn-Hilliard-Type Model for Macromolecular Microsphere Composite Hydrogels.
J. Sci. Comput., 2021
A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters.
J. Comput. Phys., 2021
A positivity-preserving and convergent numerical scheme for the binary fluid-surfactant system.
CoRR, 2021
2020
A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters.
CoRR, 2020
2018
Multiscale Model. Simul., 2018
Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation.
Comput. Math. Appl., 2018
2015
Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection.
Math. Comput., 2015
2014
J. Comput. Phys., 2014
2013
J. Comput. Phys., 2013
2012
2011
SIAM J. Sci. Comput., 2011