Zhengru Zhang

Orcid: 0000-0001-6753-0653

According to our database1, Zhengru Zhang authored at least 21 papers between 2011 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
A Structure-preserving Implicit Exponential Time Differencing Scheme for Maxwell-Ampère Nernst-Planck Model.
J. Sci. Comput., November, 2024

A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck (PNP) system.
J. Comput. Appl. Math., 2024

A uniquely solvable and positivity-preserving finite difference scheme for the Flory-Huggins-Cahn-Hilliard equation with dynamical boundary condition.
CoRR, 2024

2023
Second order stabilized semi-implicit scheme for the Cahn-Hilliard model with dynamic boundary conditions.
J. Comput. Appl. Math., August, 2023

A decoupled finite element scheme for simulating the dynamics of red blood cells in an L-shaped cavity.
Comput. Math. Appl., June, 2023

An adaptive BDF2 implicit time-stepping method for the no-slope-selection epitaxial thin film model.
Comput. Appl. Math., April, 2023

Convergence analysis of a positivity-preserving numerical scheme for the Cahn-Hilliard-Stokes system with Flory-Huggins energy potential.
Math. Comput., 2023

2022
High order accurate in time, fourth order finite difference schemes for the harmonic mapping flow.
J. Comput. Appl. Math., 2022

Optimal rate convergence analysis of a numerical scheme for the ternary Cahn-Hilliard system with a Flory-Huggins-deGennes energy potential.
J. Comput. Appl. Math., 2022

2021
Structure-Preserving, Energy Stable Numerical Schemes for a Liquid Thin Film Coarsening Model.
SIAM J. Sci. Comput., 2021

An Energy Stable Finite Element Scheme for the Three-Component Cahn-Hilliard-Type Model for Macromolecular Microsphere Composite Hydrogels.
J. Sci. Comput., 2021

A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters.
J. Comput. Phys., 2021

A positivity-preserving and convergent numerical scheme for the binary fluid-surfactant system.
CoRR, 2021

2020
A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters.
CoRR, 2020

2018
On MultiScale ADI Methods for Parabolic PDEs with a Discontinuous Coefficient.
Multiscale Model. Simul., 2018

Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation.
Comput. Math. Appl., 2018

2015
Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection.
Math. Comput., 2015

2014
An energy-stable finite-difference scheme for the binary fluid-surfactant system.
J. Comput. Phys., 2014

2013
An adaptive time-stepping strategy for solving the phase field crystal model.
J. Comput. Phys., 2013

2012
A Direct Eigenanalysis of Multibody System in Equilibrium.
J. Appl. Math., 2012

2011
An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models.
SIAM J. Sci. Comput., 2011


  Loading...