Zdzislaw Jackiewicz
Orcid: 0000-0002-9823-3042Affiliations:
- Department of Mathematics, Arizona State University, Tempe, AZ, USA
- AGH University of Science and Technology, Kraków, Poland
According to our database1,
Zdzislaw Jackiewicz
authored at least 54 papers
between 1978 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
-
on id.loc.gov
-
on d-nb.info
On csauthors.net:
Bibliography
2024
2022
Numer. Algorithms, 2022
Appl. Math. Comput., 2022
2021
J. Comput. Appl. Math., 2021
2020
Math. Comput. Simul., 2020
2019
Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part.
Numer. Algorithms, 2019
Math. Comput. Simul., 2019
2018
J. Sci. Comput., 2018
2017
Accurate Implicit-Explicit General Linear Methods with Inherent Runge-Kutta Stability.
J. Sci. Comput., 2017
2015
J. Comput. Appl. Math., 2015
2014
Numer. Algorithms, 2014
Numerical simulations of traveling wave solutions in a drift paradox inspired diffusive delay population model.
Math. Comput. Simul., 2014
J. Comput. Appl. Math., 2014
2013
J. Comput. Appl. Math., 2013
2012
Appl. Math. Comput., 2012
2011
Construction and implementation of highly stable two-step continuous methods for stiff differential systems.
Math. Comput. Simul., 2011
Appl. Math. Comput., 2011
2010
Numer. Algorithms, 2010
Numer. Algorithms, 2010
J. Sci. Comput., 2010
2009
A strategy for choosing Gegenbauer reconstruction parameters for numerical stability.
Appl. Math. Comput., 2009
2008
Numerical solution of a Fredholm integro-differential equation modelling Theta-neural networks.
Appl. Math. Comput., 2008
Appl. Math. Comput., 2008
2007
J. Complex., 2007
Stochastic approximations of perturbed Fredholm Volterra integro-differential equation arising in mathematical neurosciences.
Appl. Math. Comput., 2007
2005
Determining Analyticity for Parameter Optimization of the Gegenbauer Reconstruction Method.
SIAM J. Sci. Comput., 2005
Construction and Implementation of General Linear Methods for Ordinary Differential Equations: A Review.
J. Sci. Comput., 2005
2004
Determination of Optimal Parameters for the Chebyshev-Gegenbauer Reconstruction Method.
SIAM J. Sci. Comput., 2004
Numer. Algorithms, 2004
Spectral Versus Pseudospectral Solutions of the Wave Equation by Waveform Relaxation Methods.
J. Sci. Comput., 2004
2003
Numerische Mathematik, 2003
Stability of Gauss-Radau Pseudospectral Approximations of the One-Dimensional Wave Equation.
J. Sci. Comput., 2003
2002
Absorbing Boundary Conditions of the Second Order for the Pseudospectral Chebyshev Methods for Wave Propagation.
J. Sci. Comput., 2002
2000
Adv. Comput. Math., 2000
1999
1998
Construction of two-step Runge-Kutta methods of high order for ordinary differential equations.
Numer. Algorithms, 1998
1997
1996
Variable stepsize continuous two-step Runge-Kutta methods for ordinary differential equations.
Numer. Algorithms, 1996
1990
Global stability analysis of the Runge-Kutta methods for volterra integral and integro-differential equations with degenerate kernels.
Computing, 1990
1978
On the convergence of multistep methods for the Cauchy problem for ordinary differential equations.
Computing, 1978