Yuan Cao
Orcid: 0000-0002-3089-0046Affiliations:
- Changsha University of Science and Technology, School of Mathematics and Statistics, China
- Shandong University of Technology, School of Mathematics and Statistics, Zibo, China
- Hunan University, College of Electrical and Information Engineering, Changsha, China (former)
According to our database1,
Yuan Cao
authored at least 58 papers
between 2011 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Constructing and expressing Hermitian self-dual cyclic codes of length p<sup>s</sup> over ${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$.
Appl. Algebra Eng. Commun. Comput., May, 2024
Representation and matrix-product structure of Type-1 constacyclic codes over $ \mathbb{F}_{p^m}[u]/\langle u^e\rangle $.
Adv. Math. Commun., 2024
2023
An explicit expression for all distinct self-dual cyclic codes of length p<sup>k</sup> over Galois ring $\mathrm{GR}(p^2,m)$.
Appl. Algebra Eng. Commun. Comput., May, 2023
2022
Construction and enumeration of left dihedral codes satisfying certain duality properties.
Discret. Math., 2022
On the construction of self-dual cyclic codes over $\mathbb {Z}_{4}$ with arbitrary even length.
Cryptogr. Commun., 2022
Appl. Algebra Eng. Commun. Comput., 2022
2021
An explicit expression for Euclidean self-dual cyclic codes of length 2<sup><i>k</i></sup> over Galois ring GR(4, <i>m</i>).
Finite Fields Their Appl., 2021
An explicit expression for Euclidean self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2021
An explicit representation and enumeration for negacyclic codes of length 2<sup>kn</sup> over ℤ<sub>4+uℤ<sub>4</sub></sub>.
Adv. Math. Commun., 2021
On self-duality and hulls of cyclic codes over $\frac{\mathbb {F}_{2^m}[u]}{\langle u^k\rangle }$ with oddly even length.
Appl. Algebra Eng. Commun. Comput., 2021
2020
Self-Dual Binary $[8m, \, \, 4m]$ -Codes Constructed by Left Ideals of the Dihedral Group Algebra $\mathbb{F}_2[D_{8m}]$.
IEEE Trans. Inf. Theory, 2020
Construction and enumeration for self-dual cyclic codes of even length over F2m+uF2m.
Finite Fields Their Appl., 2020
Discret. Math., 2020
Discret. Math., 2020
An explicit expression for Euclidean self-dual cyclic codes of length 2<sup>k</sup> over Galois ring GR(4, m).
CoRR, 2020
Correcting mistakes in the paper "A mass formula for negacyclic codes of length 2<sup>k</sup> and some good negacyclic codes over $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$" [Cryptogr. Commun. (2017) 9: 241-272].
Cryptogr. Commun., 2020
Complete classification for simple root cyclic codes over the local ring $\mathbb {Z}_{4}[v]/\langle v^{2}+2v\rangle $.
Cryptogr. Commun., 2020
Explicit Representation and Enumeration of Repeated-Root (δ + αu²)-Constacyclic Codes Over F₂<sup>m</sup>[u]/‹u<sup>2λ</sup>›.
IEEE Access, 2020
2019
Finite Fields Their Appl., 2019
An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2019
Discret. Math., 2019
Construction and enumeration for self-dual cyclic codes over Z<sub>4</sub> of oddly even length.
Des. Codes Cryptogr., 2019
On self-duality and hulls of cyclic codes over F<sub>2<sup>m</sup></sub>[u]/⟨u<sup>k</sup>⟩ with oddly even length.
CoRR, 2019
Construction and enumeration for self-dual cyclic codes of even length over F<sub>2<sup>m</sup></sub> + uF<sub>2<sup>m</sup></sub>.
CoRR, 2019
An efficient method to construct self-dual cyclic codes of length p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
CoRR, 2019
Explicit representation for a class of Type 2 constacyclic codes over the ring F<sub>2<sup>2</sup></sub>[u]/〈u<sup>2λ</sup>〉 with even length.
CoRR, 2019
2018
Negacyclic codes over the local ring Z4[v]/〈v2+2v〉 of oddly even length and their Gray images.
Finite Fields Their Appl., 2018
An explicit representation and enumeration for self-dual cyclic codes over F<sub>2<sup>m</sup></sub>+uF<sub>2<sup>m</sup></sub> of length 2<sup>s</sup>.
CoRR, 2018
An explicit representation and enumeration for negacyclic codes of length 2<sup>k</sup>n over Z<sub>4</sub>+uZ<sub>4</sub>.
CoRR, 2018
A class of repeated-root constacyclic codes over 𝔽<sub>p<sup>m</sup></sub>[u]/〈u<sup>e</sup>〉 of Type 2.
CoRR, 2018
Negacyclic codes over the local ring ℤ<sub>4</sub>[v]/〈v<sup>2</sup>+2v〉 of oddly even length and their Gray images.
CoRR, 2018
Constacyclic codes of length np<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2018
Matrix-product structure of constacyclic codes over finite chain rings 𝔽<sub>p<sup>m</sup></sub>[u]/⟨u<sup>e</sup>⟩.
Appl. Algebra Eng. Commun. Comput., 2018
Complete classification of (δ + α u<sup>2</sup>)-constacyclic codes over 𝔽<sub>3<sup>m</sup></sub>[u]<u<sup>4</sup>> of length 3n.
Appl. Algebra Eng. Commun. Comput., 2018
2017
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017
Complete classification of (δ + αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub> / < u<sup>4</sup> > of oddly even length.
Discret. Math., 2017
Complete classification for simple root cyclic codes over local rings $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$.
CoRR, 2017
CoRR, 2017
On a class of constacyclic codes over the non-principal ideal ring Z<sub>p<sup>s</sup></sub>+uZ<sub>p<sup>s</sup></sub>.
CoRR, 2017
2016
On a Class of (δ+α<i>u</i><sup>2</sup>)-Constacyclic Codes over F<sub><i>q</i></sub>[<i>u</i>]/〈<i>u</i><sup>4</sup>〉.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016
The Gray image of constacyclic codes over the finite chain ring $F_{p^m}[u]/\langle u^k\rangle$.
CoRR, 2016
Complete classification of (δ+αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub>[u]/\langle u^4\rangle of oddly even length.
CoRR, 2016
Appl. Algebra Eng. Commun. Comput., 2016
Cyclic codes over F<sub>2<sup>m</sup></sub>[u] / ⟨u<sup>k</sup>⟩ of oddly even length.
Appl. Algebra Eng. Commun. Comput., 2016
2015
Discret. Math., 2015
On (α+uβ)-constacyclic codes of length p<sup>s</sup>n over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
CoRR, 2015
Constacyclic codes of length p<sup>s</sup>n over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
CoRR, 2015
On a class of (δ+αu<sup>2</sup>)-constacyclic codes over 𝔽<sub>q</sub>[u]/〈u<sup>4</sup>〉.
CoRR, 2015
CoRR, 2015
Appl. Algebra Eng. Commun. Comput., 2015
2011
Proceedings of the Sixth International Conference on Image and Graphics, 2011