Yonglin Cao

Orcid: 0000-0002-3682-6483

According to our database1, Yonglin Cao authored at least 68 papers between 2006 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Constructing and expressing Hermitian self-dual cyclic codes of length p<sup>s</sup> over ${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$.
Appl. Algebra Eng. Commun. Comput., May, 2024

Representation and matrix-product structure of Type-1 constacyclic codes over $ \mathbb{F}_{p^m}[u]/\langle u^e\rangle $.
Adv. Math. Commun., 2024

2023
An explicit expression for all distinct self-dual cyclic codes of length p<sup>k</sup> over Galois ring $\mathrm{GR}(p^2,m)$.
Appl. Algebra Eng. Commun. Comput., May, 2023

Hermitian duality of left dihedral codes over finite fields.
Discret. Math., 2023

2022
Construction and enumeration of left dihedral codes satisfying certain duality properties.
Discret. Math., 2022

On the construction of self-dual cyclic codes over $\mathbb {Z}_{4}$ with arbitrary even length.
Cryptogr. Commun., 2022

Self-dual cyclic codes over ${\mathbb {Z}}_4$ of length 4n.
Appl. Algebra Eng. Commun. Comput., 2022

2021
An explicit expression for Euclidean self-dual cyclic codes of length 2<sup><i>k</i></sup> over Galois ring GR(4, <i>m</i>).
Finite Fields Their Appl., 2021

An explicit expression for Euclidean self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2021

An explicit representation and enumeration for negacyclic codes of length 2<sup>kn</sup> over ℤ<sub>4+uℤ<sub>4</sub></sub>.
Adv. Math. Commun., 2021

On self-duality and hulls of cyclic codes over $\frac{\mathbb {F}_{2^m}[u]}{\langle u^k\rangle }$ with oddly even length.
Appl. Algebra Eng. Commun. Comput., 2021

2020
Self-Dual Binary $[8m, \, \, 4m]$ -Codes Constructed by Left Ideals of the Dihedral Group Algebra $\mathbb{F}_2[D_{8m}]$.
IEEE Trans. Inf. Theory, 2020

Construction and enumeration for self-dual cyclic codes of even length over F2m+uF2m.
Finite Fields Their Appl., 2020

Algebraic structure of additive conjucyclic codes over F4.
Finite Fields Their Appl., 2020

An efficient method to construct self-dual cyclic codes of length ps over Fpm+uFpm.
Discret. Math., 2020

On matrix-product structure of repeated-root constacyclic codes over finite fields.
Discret. Math., 2020

An explicit expression for Euclidean self-dual cyclic codes of length 2<sup>k</sup> over Galois ring GR(4, m).
CoRR, 2020

Correcting mistakes in the paper "A mass formula for negacyclic codes of length 2<sup>k</sup> and some good negacyclic codes over $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$" [Cryptogr. Commun. (2017) 9: 241-272].
Cryptogr. Commun., 2020

Complete classification for simple root cyclic codes over the local ring $\mathbb {Z}_{4}[v]/\langle v^{2}+2v\rangle $.
Cryptogr. Commun., 2020

Explicit Representation and Enumeration of Repeated-Root (δ + αu²)-Constacyclic Codes Over F₂<sup>m</sup>[u]/‹u<sup>2λ</sup>›.
IEEE Access, 2020

2019
A class of repeated-root constacyclic codes over Fpm[u]/〈ue〉 of Type 2.
Finite Fields Their Appl., 2019

An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2019

Type 2 constacyclic codes over F2m[u]∕〈u3〉 of oddly even length.
Discret. Math., 2019

Construction and enumeration for self-dual cyclic codes over Z<sub>4</sub> of oddly even length.
Des. Codes Cryptogr., 2019

On self-duality and hulls of cyclic codes over F<sub>2<sup>m</sup></sub>[u]/⟨u<sup>k</sup>⟩ with oddly even length.
CoRR, 2019

Construction and enumeration for self-dual cyclic codes of even length over F<sub>2<sup>m</sup></sub> + uF<sub>2<sup>m</sup></sub>.
CoRR, 2019

An efficient method to construct self-dual cyclic codes of length p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
CoRR, 2019

Explicit representation for a class of Type 2 constacyclic codes over the ring F<sub>2<sup>2</sup></sub>[u]/〈u<sup>2λ</sup>〉 with even length.
CoRR, 2019

2018
Negacyclic codes over the local ring Z4[v]/〈v2+2v〉 of oddly even length and their Gray images.
Finite Fields Their Appl., 2018

Left dihedral codes over Galois rings GR(p2, m).
Discret. Math., 2018

An explicit representation and enumeration for self-dual cyclic codes over F<sub>2<sup>m</sup></sub>+uF<sub>2<sup>m</sup></sub> of length 2<sup>s</sup>.
CoRR, 2018

An explicit representation and enumeration for negacyclic codes of length 2<sup>k</sup>n over Z<sub>4</sub>+uZ<sub>4</sub>.
CoRR, 2018

A class of repeated-root constacyclic codes over 𝔽<sub>p<sup>m</sup></sub>[u]/〈u<sup>e</sup>〉 of Type 2.
CoRR, 2018

Negacyclic codes over the local ring ℤ<sub>4</sub>[v]/〈v<sup>2</sup>+2v〉 of oddly even length and their Gray images.
CoRR, 2018

Constacyclic codes of length np<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2018

Matrix-product structure of constacyclic codes over finite chain rings 𝔽<sub>p<sup>m</sup></sub>[u]/⟨u<sup>e</sup>⟩.
Appl. Algebra Eng. Commun. Comput., 2018

Complete classification of (δ + α u<sup>2</sup>)-constacyclic codes over 𝔽<sub>3<sup>m</sup></sub>[u]<u<sup>4</sup>> of length 3n.
Appl. Algebra Eng. Commun. Comput., 2018

2017
A Class of Left Dihedral Codes Over Rings 𝔽<sub>q</sub>+u𝔽<sub>q</sub>.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017

Complete classification of (δ + αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub> / < u<sup>4</sup> > of oddly even length.
Discret. Math., 2017

Complete classification for simple root cyclic codes over local rings $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$.
CoRR, 2017

Matrix-product structure of repeated-root constacyclic codes over finite fields.
CoRR, 2017

On a class of constacyclic codes over the non-principal ideal ring Z<sub>p<sup>s</sup></sub>+uZ<sub>p<sup>s</sup></sub>.
CoRR, 2017

2016
On a Class of Left Metacyclic Codes.
IEEE Trans. Inf. Theory, 2016

On left quaternion codes.
Int. J. Comput. Math., 2016

On a Class of (δ+α<i>u</i><sup>2</sup>)-Constacyclic Codes over F<sub><i>q</i></sub>[<i>u</i>]/〈<i>u</i><sup>4</sup>〉.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016

Concatenated structure of left dihedral codes.
Finite Fields Their Appl., 2016

The Gray image of constacyclic codes over the finite chain ring $F_{p^m}[u]/\langle u^k\rangle$.
CoRR, 2016

Left dihedral codes over Galois rings GR(p<sup>2</sup>, m).
CoRR, 2016

Complete classification of (δ+αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub>[u]/\langle u^4\rangle of oddly even length.
CoRR, 2016

Concatenated structure of cyclic codes over ℤ<sub>4</sub> of length 4n.
Appl. Algebra Eng. Commun. Comput., 2016

Cyclic codes over F<sub>2<sup>m</sup></sub>[u] / ⟨u<sup>k</sup>⟩ of oddly even length.
Appl. Algebra Eng. Commun. Comput., 2016

2015
Repeated root cyclic 𝔽<sub>q</sub>-linear codes over 𝔽<sub>q<sup>l</sup></sub>.
Finite Fields Their Appl., 2015

Enumeration and construction of additive cyclic codes over Galois rings.
Discret. Math., 2015

Semisimple multivariable 𝔽<sub>q</sub>-linear codes over 𝔽<sub>q<sup>l</sup></sub>.
Des. Codes Cryptogr., 2015

Constacyclic codes of length p<sup>s</sup>n over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
CoRR, 2015

On a class of (δ+αu<sup>2</sup>)-constacyclic codes over 𝔽<sub>q</sub>[u]/〈u<sup>4</sup>〉.
CoRR, 2015

Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k\rangle$ of oddly even length.
CoRR, 2015

On the arithmetic of the endomorphism ring End(ℤ<sub>p</sub>[x]<sub>/⟨̅f(x)⟩</sub> × ℤ<sub>p<sup>2</sup></sub>[x]<sub>/⟨f(x)⟩</sub>).
Appl. Algebra Eng. Commun. Comput., 2015

Constacyclic F<sub>q</sub>-linear codes over F<sub>q<sup>l</sup></sub>.
Appl. Algebra Eng. Commun. Comput., 2015

2014
Quasi-cyclic codes of index 2 and skew polynomial rings over finite fields.
Finite Fields Their Appl., 2014

A class of 1-generator repeated root quasi-cyclic codes.
Des. Codes Cryptogr., 2014

2013
On constacyclic codes over finite chain rings.
Finite Fields Their Appl., 2013

Constructing quasi-cyclic codes from linear algebra theory.
Des. Codes Cryptogr., 2013

1-generator quasi-cyclic codes over finite chain rings.
Appl. Algebra Eng. Commun. Comput., 2013

2011
Structural properties and enumeration of 1-generator generalized quasi-cyclic codes.
Des. Codes Cryptogr., 2011

Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration.
Appl. Algebra Eng. Commun. Comput., 2011

2007
On the multiplicative monoid of n×n matrices over Z<sub>p<sup>m</sup></sub>.
Discret. Math., 2007

2006
Generalized affine transformation monoids on Galois rings.
Int. J. Math. Math. Sci., 2006


  Loading...