Yonglin Cao
Orcid: 0000-0002-3682-6483
According to our database1,
Yonglin Cao
authored at least 68 papers
between 2006 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Constructing and expressing Hermitian self-dual cyclic codes of length p<sup>s</sup> over ${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$.
Appl. Algebra Eng. Commun. Comput., May, 2024
Representation and matrix-product structure of Type-1 constacyclic codes over $ \mathbb{F}_{p^m}[u]/\langle u^e\rangle $.
Adv. Math. Commun., 2024
2023
An explicit expression for all distinct self-dual cyclic codes of length p<sup>k</sup> over Galois ring $\mathrm{GR}(p^2,m)$.
Appl. Algebra Eng. Commun. Comput., May, 2023
2022
Construction and enumeration of left dihedral codes satisfying certain duality properties.
Discret. Math., 2022
On the construction of self-dual cyclic codes over $\mathbb {Z}_{4}$ with arbitrary even length.
Cryptogr. Commun., 2022
Appl. Algebra Eng. Commun. Comput., 2022
2021
An explicit expression for Euclidean self-dual cyclic codes of length 2<sup><i>k</i></sup> over Galois ring GR(4, <i>m</i>).
Finite Fields Their Appl., 2021
An explicit expression for Euclidean self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2021
An explicit representation and enumeration for negacyclic codes of length 2<sup>kn</sup> over ℤ<sub>4+uℤ<sub>4</sub></sub>.
Adv. Math. Commun., 2021
On self-duality and hulls of cyclic codes over $\frac{\mathbb {F}_{2^m}[u]}{\langle u^k\rangle }$ with oddly even length.
Appl. Algebra Eng. Commun. Comput., 2021
2020
Self-Dual Binary $[8m, \, \, 4m]$ -Codes Constructed by Left Ideals of the Dihedral Group Algebra $\mathbb{F}_2[D_{8m}]$.
IEEE Trans. Inf. Theory, 2020
Construction and enumeration for self-dual cyclic codes of even length over F2m+uF2m.
Finite Fields Their Appl., 2020
Finite Fields Their Appl., 2020
Discret. Math., 2020
Discret. Math., 2020
An explicit expression for Euclidean self-dual cyclic codes of length 2<sup>k</sup> over Galois ring GR(4, m).
CoRR, 2020
Correcting mistakes in the paper "A mass formula for negacyclic codes of length 2<sup>k</sup> and some good negacyclic codes over $\mathbb {Z}_{4}+u\mathbb {Z}_{4}$" [Cryptogr. Commun. (2017) 9: 241-272].
Cryptogr. Commun., 2020
Complete classification for simple root cyclic codes over the local ring $\mathbb {Z}_{4}[v]/\langle v^{2}+2v\rangle $.
Cryptogr. Commun., 2020
Explicit Representation and Enumeration of Repeated-Root (δ + αu²)-Constacyclic Codes Over F₂<sup>m</sup>[u]/‹u<sup>2λ</sup>›.
IEEE Access, 2020
2019
Finite Fields Their Appl., 2019
An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2019
Discret. Math., 2019
Construction and enumeration for self-dual cyclic codes over Z<sub>4</sub> of oddly even length.
Des. Codes Cryptogr., 2019
On self-duality and hulls of cyclic codes over F<sub>2<sup>m</sup></sub>[u]/⟨u<sup>k</sup>⟩ with oddly even length.
CoRR, 2019
Construction and enumeration for self-dual cyclic codes of even length over F<sub>2<sup>m</sup></sub> + uF<sub>2<sup>m</sup></sub>.
CoRR, 2019
An efficient method to construct self-dual cyclic codes of length p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
CoRR, 2019
Explicit representation for a class of Type 2 constacyclic codes over the ring F<sub>2<sup>2</sup></sub>[u]/〈u<sup>2λ</sup>〉 with even length.
CoRR, 2019
2018
Negacyclic codes over the local ring Z4[v]/〈v2+2v〉 of oddly even length and their Gray images.
Finite Fields Their Appl., 2018
An explicit representation and enumeration for self-dual cyclic codes over F<sub>2<sup>m</sup></sub>+uF<sub>2<sup>m</sup></sub> of length 2<sup>s</sup>.
CoRR, 2018
An explicit representation and enumeration for negacyclic codes of length 2<sup>k</sup>n over Z<sub>4</sub>+uZ<sub>4</sub>.
CoRR, 2018
A class of repeated-root constacyclic codes over 𝔽<sub>p<sup>m</sup></sub>[u]/〈u<sup>e</sup>〉 of Type 2.
CoRR, 2018
Negacyclic codes over the local ring ℤ<sub>4</sub>[v]/〈v<sup>2</sup>+2v〉 of oddly even length and their Gray images.
CoRR, 2018
Constacyclic codes of length np<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2018
Matrix-product structure of constacyclic codes over finite chain rings 𝔽<sub>p<sup>m</sup></sub>[u]/⟨u<sup>e</sup>⟩.
Appl. Algebra Eng. Commun. Comput., 2018
Complete classification of (δ + α u<sup>2</sup>)-constacyclic codes over 𝔽<sub>3<sup>m</sup></sub>[u]<u<sup>4</sup>> of length 3n.
Appl. Algebra Eng. Commun. Comput., 2018
2017
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2017
Complete classification of (δ + αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub> / < u<sup>4</sup> > of oddly even length.
Discret. Math., 2017
Complete classification for simple root cyclic codes over local rings $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$.
CoRR, 2017
CoRR, 2017
On a class of constacyclic codes over the non-principal ideal ring Z<sub>p<sup>s</sup></sub>+uZ<sub>p<sup>s</sup></sub>.
CoRR, 2017
2016
On a Class of (δ+α<i>u</i><sup>2</sup>)-Constacyclic Codes over F<sub><i>q</i></sub>[<i>u</i>]/〈<i>u</i><sup>4</sup>〉.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016
The Gray image of constacyclic codes over the finite chain ring $F_{p^m}[u]/\langle u^k\rangle$.
CoRR, 2016
Complete classification of (δ+αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub>[u]/\langle u^4\rangle of oddly even length.
CoRR, 2016
Appl. Algebra Eng. Commun. Comput., 2016
Cyclic codes over F<sub>2<sup>m</sup></sub>[u] / ⟨u<sup>k</sup>⟩ of oddly even length.
Appl. Algebra Eng. Commun. Comput., 2016
2015
Finite Fields Their Appl., 2015
Discret. Math., 2015
Des. Codes Cryptogr., 2015
Constacyclic codes of length p<sup>s</sup>n over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
CoRR, 2015
On a class of (δ+αu<sup>2</sup>)-constacyclic codes over 𝔽<sub>q</sub>[u]/〈u<sup>4</sup>〉.
CoRR, 2015
CoRR, 2015
On the arithmetic of the endomorphism ring End(ℤ<sub>p</sub>[x]<sub>/⟨̅f(x)⟩</sub> × ℤ<sub>p<sup>2</sup></sub>[x]<sub>/⟨f(x)⟩</sub>).
Appl. Algebra Eng. Commun. Comput., 2015
Appl. Algebra Eng. Commun. Comput., 2015
2014
Finite Fields Their Appl., 2014
2013
Des. Codes Cryptogr., 2013
Appl. Algebra Eng. Commun. Comput., 2013
2011
Des. Codes Cryptogr., 2011
Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration.
Appl. Algebra Eng. Commun. Comput., 2011
2007
Discret. Math., 2007
2006
Int. J. Math. Math. Sci., 2006