Yinghui Tang
Orcid: 0000-0001-7439-8603
According to our database1,
Yinghui Tang
authored at least 28 papers
between 2007 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
Oper. Res., March, 2025
2022
Performance analysis of an <i>M</i>/<i>G</i>/1 queue with bi-level randomized (<i>p</i>, <i>N</i><sub>1</sub>, <i>N</i><sub>2</sub>)-policy.
RAIRO Oper. Res., 2022
Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method.
Oper. Res., 2022
2021
Analysis of an <i>k</i>-out-of-<i>n</i>: <i>G</i> system with redundant dependency and repair equipment procurement.
J. Control. Decis., 2021
2019
An <i>N</i>-policy discrete-time <i>Geo/G/</i>1 queue with modified multiple server vacations and Bernoulli feedback.
RAIRO Oper. Res., 2019
The improvement upon the reliability of the k-out-of-n: F system with the repair rates differentiation policy.
Oper. Res., 2019
2017
Analysis of <i>D</i>-policy discrete-time <i>Geo/G/1 </i>queue with second <i>J</i>-optional service and unreliable server.
RAIRO Oper. Res., 2017
The structure of departure process and optimal control strategy <i>N</i>* for <i>Geo/G</i>/1 discrete-time queue with multiple server vacations and Min(<i>N, V</i>)-Policy.
J. Syst. Sci. Complex., 2017
2016
J. Syst. Sci. Complex., 2016
Analysis of a repairable k-out-of-n: G system with repairman's multiple delayed vacations.
Int. J. Comput. Math., 2016
2015
Computation and transient analysis of a k-out-of-n: G repairable system with general repair times.
Oper. Res., 2015
2014
Individually and socially optimal joining rules for an egalitarian processor-sharing queue under different information scenarios.
Comput. Ind. Eng., 2014
2013
Queue size distribution and capacity optimum design for <i>N</i>-policy <i>G</i><i>e</i><i>o</i><sup>(<i>λ</i><sub>1</sub>, <i>λ</i><sub>2</sub>, <i>λ</i><sub>3</sub>)</sup>/<i>G</i>/1 queue with setup time and variable input rate.
Math. Comput. Model., 2013
A Novel Analytic Technique for the Service Station Reliability in a Discrete-Time Repairable Queue.
J. Appl. Math., 2013
The Discrete-Time Bulk-Service <i>Geo/Geo/1</i> Queue with Multiple Working Vacations.
J. Appl. Math., 2013
A geometric process model for <i>M</i>/<i>PH</i>(<i>M</i>/<i>PH</i>)/1/<i>K</i> queue with new service machine procurement lead time.
Int. J. Syst. Sci., 2013
A phase-type geometric process repair model with spare device procurement and repairman's multiple vacations.
Eur. J. Oper. Res., 2013
2012
Reliability indices of discrete-time Geo<sup>x</sup>/G/1 queueing system with unreliable service station and multiple adaptive delayed vacations.
J. Syst. Sci. Complex., 2012
The recursive solution of queue length for <i>Geo/G</i>/1 queue with <i>N</i>-policy.
J. Syst. Sci. Complex., 2012
A deteriorating repairable system with stochastic lead time and replaceable repair facility.
Comput. Ind. Eng., 2012
2011
Math. Comput. Model., 2011
<i>Geom/G</i> <sub>1</sub>, <i>G</i> <sub>2</sub>/1/1 repairable Erlang loss system with catastrophe and second optional service.
J. Syst. Sci. Complex., 2011
GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period.
J. Comput. Appl. Math., 2011
Recursive solution of queue length distribution for Geo/G/1 queue with single server vacation and variable input rate.
Comput. Math. Appl., 2011
2009
Transient Queue Size Distribution Solution of Geom / <i>G</i> / 1 Queue with Feedback-A Recursive Method.
J. Syst. Sci. Complex., 2009
Steady state analysis and computation of the GI<sup>[x]</sup>/M<sup>b</sup>/1/L queue with multiple working vacations and partial batch rejection.
Comput. Ind. Eng., 2009
2007
On The Transient Departure Process of <i>M</i> <sup> <i>x</i> </sup>/<i>G</i>/1 Queueing System with Single Server Vacation.
J. Syst. Sci. Complex., 2007