Yidu Yang

According to our database1, Yidu Yang authored at least 35 papers between 2011 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
An adaptive FEM for the elastic transmission eigenvalue problem with different elastic tensors and different mass densities.
Adv. Comput. Math., February, 2024

The A Posteriori Error Estimates of the FE Approximation of Defective Eigenvalues for Non-Self-Adjoint Eigenvalue Problems.
SIAM J. Numer. Anal., 2024

2023
The a posteriori error estimates and an adaptive algorithm of the FEM for transmission eigenvalues for anisotropic media.
Comput. Math. Appl., November, 2023

The finite element method for modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem.
Appl. Math. Lett., November, 2023

An hp-mixed discontinuous Galerkin method for the biharmonic eigenvalue problem.
Appl. Math. Comput., August, 2023

The Mixed Discontinuous Galerkin Method for Transmission Eigenvalues for Anisotropic Medium.
J. Sci. Comput., July, 2023

2022
The Finite Element Method for the Elastic Transmission Eigenvalue Problem with Different Elastic Tensors.
J. Sci. Comput., 2022

The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering.
J. Sci. Comput., 2022

The a priori and a posteriori error estimates of Crouzeix-Raviart element for the fluid-solid vibration problem.
Int. J. Comput. Math., 2022

A posteriori error estimates of mixed discontinuous Galerkin method for the Stokes eigenvalue problem.
CoRR, 2022

The a posteriori error estimates and adaptive computation of nonconforming mixed finite elements for the Stokes eigenvalue problem.
Appl. Math. Comput., 2022

2021
The nonconforming Crouzeix-Raviart element approximation and two-grid discretizations for the elastic eigenvalue problem.
CoRR, 2021

Guaranteed lower eigenvalue bounds for two spectral problems arising in fluid mechanics.
Comput. Math. Appl., 2021

2020
A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering.
Int. J. Comput. Math., 2020

Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem.
Comput. Math. Appl., 2020

Mixed methods for the elastic transmission eigenvalue problem.
Appl. Math. Comput., 2020

Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering.
Adv. Comput. Math., 2020

2019
Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem.
J. Sci. Comput., 2019

Lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients.
CoRR, 2019

2018
C 0IPG adaptive algorithms for the biharmonic eigenvalue problem.
Numer. Algorithms, 2018

A two-grid discretization scheme of non-conforming finite elements for transmission eigenvalues.
Comput. Math. Appl., 2018

The adaptive Ciarlet-Raviart mixed method for biharmonic problems with simply supported boundary condition.
Appl. Math. Comput., 2018

2017
A C<sup>0</sup> method and its error estimates for the Helmholtz transmission eigenvalue problem.
J. Comput. Appl. Math., 2017

A new multigrid finite element method for the transmission eigenvalue problems.
Appl. Math. Comput., 2017

2016
Mixed Methods for the Helmholtz Transmission Eigenvalues.
SIAM J. Sci. Comput., 2016

An Adaptive Finite Element Method for the Transmission Eigenvalue Problem.
J. Sci. Comput., 2016

The lower bound property of the Morley element eigenvalues.
Comput. Math. Appl., 2016

2015
The Shifted-Inverse Iteration Based on the Multigrid Discretizations for Eigenvalue Problems.
SIAM J. Sci. Comput., 2015

The Lower/Upper Bound Property of the Crouzeix-Raviart Element Eigenvalues on Adaptive Meshes.
J. Sci. Comput., 2015

Multilevel finite element discretizations based on local defect correction for nonsymmetric eigenvalue problems.
Comput. Math. Appl., 2015

2013
Local and Parallel Finite Element Discretizations for Eigenvalue Problems.
SIAM J. Sci. Comput., 2013

The adaptive finite element method based on multi-scale discretizations for eigenvalue problems.
Comput. Math. Appl., 2013

2012
Eigenvalue approximations from below using Morley elements.
Adv. Comput. Math., 2012

2011
Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems.
SIAM J. Numer. Anal., 2011

A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem.
Appl. Math. Comput., 2011


  Loading...