Xiaoshan Kai
Orcid: 0000-0002-4384-1470
According to our database1,
Xiaoshan Kai
authored at least 58 papers
between 2008 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
2024
A class of constacyclic BCH codes of length $n=\frac{q^{2m}-1}{2\left( q^2-1\right) }$ and related quantum codes.
Quantum Inf. Process., December, 2024
Discret. Math., 2024
Adv. Math. Commun., 2024
Adv. Math. Commun., 2024
2023
Quantum Inf. Process., November, 2023
Quantum Inf. Process., October, 2023
Cryptogr. Commun., September, 2023
J. Appl. Math. Comput., April, 2023
J. Appl. Math. Comput., February, 2023
Hermitian dual-containing constacyclic codes over $\mathbb {F}_{q^{2}}+{v_{1}}\mathbb {F}_{q^{2}}+\cdots +{v_{r}}\mathbb {F}_{q^{2}}$ and new quantum codes.
Cryptogr. Commun., 2023
2022
J. Appl. Math. Comput., August, 2022
Quantum Inf. Process., 2022
2021
Quantum codes from Hermitian dual-containing constacyclic codes over ${\mathbb {F}}_{q^{2}}+{v}{\mathbb {F}}_{q^{2}}$.
Quantum Inf. Process., 2021
Des. Codes Cryptogr., 2021
2020
Quantum Inf. Process., 2020
Discret. Math., 2020
2019
Quantum Inf. Process., 2019
Finite Fields Their Appl., 2019
2018
Quantum Inf. Process., 2018
MDS codes with Hermitian hulls of arbitrary dimensions and their quantum error correction.
CoRR, 2018
2017
A family of constacyclic codes over F<sub>2<sup>m</sup></sub>+uF<sub>2<sup>m</sup></sub> and application to quantum codes.
CoRR, 2017
2016
Quantum Inf. Process., 2016
On the Gray images of some constacyclic codes over <i>F</i> <sub> <i>p</i> </sub> + <i>u</i> <i>F</i> <sub> <i>p</i> </sub> + <i>u</i> <sup>2</sup> <i>F</i> <sub> <i>p</i> </sub>.
J. Syst. Sci. Complex., 2016
Finite Fields Their Appl., 2016
MacWilliams type identities on the Lee and Euclidean weights for linear codes over ℤ<sub>ℓ</sub>.
CoRR, 2016
CoRR, 2016
2015
2014
(1-<i>uv</i>)-constacyclic codes over (𝔽<sub>p</sub> + u𝔽<sub>p</sub> + v𝔽<sub>p</sub> + uv𝔽<sub>p</sub>).
J. Syst. Sci. Complex., 2014
2013
2012
A family of constacyclic codes over <i>F</i> <sub>2</sub> + <i>uF</i> <sub>2</sub> + <i>vF</i> <sub>2</sub> + <i>uvF</i> <sub>2</sub>.
J. Syst. Sci. Complex., 2012
Finite Fields Their Appl., 2012
Discret. Math., 2012
2010
(1+λ<i>u</i>)-Constacyclic codes over <i>F<sub>p</sub></i>[<i>u</i>]/〈<i>u<sup>m</sup>〉</i>.
J. Frankl. Inst., 2010
Finite Fields Their Appl., 2010
Discret. Math., 2010
2009
Discret. Math., 2009
Proceedings of the IEEE International Symposium on Information Theory, 2009
2008
The Hamming Distances of Negacyclic Codes of Length 2<sup>s</sup> over GR(2<sup>a</sup>, m).
J. Syst. Sci. Complex., 2008