Xiaoming Wang
Orcid: 0000-0002-2399-6336Affiliations:
- Southern University of Science and Technology, Departments of Mathematics, Shenzhen, China
- Florida State University, Department of Mathematics, Tallahassee, FL, USA (2003 - 2018)
- Iowa State University, Department of Mathematics, Ames, IA, USA (1998 - 2005)
- New York University, Courant Institute of Mathematical Sciences, NY, USA (1996 - 1998)
According to our database1,
Xiaoming Wang
authored at least 34 papers
between 2001 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on scopus.com
-
on orcid.org
On csauthors.net:
Bibliography
2024
Convergence analysis of a second order numerical scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system.
J. Comput. Appl. Math., 2024
2022
The Beavers-Joseph Interface Boundary Condition is Well Approximated by the Beavers-Joseph-Saffman-Jones Interface Boundary Condition.
SIAM J. Appl. Math., 2022
A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System.
J. Sci. Comput., 2022
2021
Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system.
CoRR, 2021
Energy stable arbitrary order ETD-MS method for gradient flows with Lipschitz nonlinearity.
CoRR, 2021
2020
J. Sci. Comput., 2020
Uniquely Solvable and Energy Stable Decoupled Numerical Schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq System.
J. Sci. Comput., 2020
2019
A Second Order BDF Numerical Scheme with Variable Steps for the Cahn-Hilliard Equation.
SIAM J. Numer. Anal., 2019
Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential.
J. Comput. Phys. X, 2019
A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection.
CoRR, 2019
2018
A Second Order in Time, Decoupled, Unconditionally Stable Numerical Scheme for the Cahn-Hilliard-Darcy System.
J. Sci. Comput., 2018
2017
Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system.
Numerische Mathematik, 2017
Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry.
Numerische Mathematik, 2017
2016
An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system.
Numerische Mathematik, 2016
2015
Numerische Mathematik, 2015
A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation.
J. Comput. Phys., 2015
2014
Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems.
Math. Comput., 2014
A Linear Iteration Algorithm for a Second-Order Energy Stable Scheme for a Thin Film Model Without Slope Selection.
J. Sci. Comput., 2014
2013
SIAM J. Numer. Anal., 2013
2012
Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy.
SIAM J. Numer. Anal., 2012
Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations.
SIAM J. Numer. Anal., 2012
An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations.
Numerische Mathematik, 2012
J. Sci. Comput., 2012
2011
SIAM J. Numer. Anal., 2011
Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition.
Numerische Mathematik, 2011
2010
Finite Element Approximations for Stokes-Darcy Flow with Beavers-Joseph Interface Conditions.
SIAM J. Numer. Anal., 2010
Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization.
Math. Comput., 2010
J. Sci. Comput., 2010
2008
A Semi-Implicit Scheme for Stationary Statistical Properties of the Infinite Prandtl Number Model.
SIAM J. Numer. Anal., 2008
A uniformly dissipative scheme for stationary statistical properties of the infinite Prandtl number model.
Appl. Math. Lett., 2008
2004
Large Prandtl number behavior of the Boussinesq system of Rayleigh-Bénard convection.
Appl. Math. Lett., 2004
2001