Wen Li
Orcid: 0000-0002-0864-042XAffiliations:
- South China Normal University, School of Mathematical Sciences, Guangzhou
According to our database1,
Wen Li
authored at least 56 papers
between 2002 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
IEEE Trans. Neural Networks Learn. Syst., August, 2024
Multidimensional Data Processing With Bayesian Inference via Structural Block Decomposition.
IEEE Trans. Cybern., May, 2024
Signal Image Video Process., February, 2024
2023
Numer. Linear Algebra Appl., October, 2023
A smoothing Newton method based on the modulus equation for a class of weakly nonlinear complementarity problems.
Comput. Optim. Appl., September, 2023
Hyper-Laplacian Regularized Multi-View Clustering with Exclusive L21 Regularization and Tensor Log-Determinant Minimization Approach.
ACM Trans. Intell. Syst. Technol., 2023
2022
3-D Array Image Data Completion by Tensor Decomposition and Nonconvex Regularization Approach.
IEEE Trans. Signal Process., 2022
Nonconvex 3D array image data recovery and pattern recognition under tensor framework.
Pattern Recognit., 2022
A modified SOR-like method for absolute value equations associated with second order cones.
J. Comput. Appl. Math., 2022
2021
Numerical subspace algorithms for solving the tensor equations involving Einstein product.
Numer. Linear Algebra Appl., 2021
The Nonconvex Tensor Robust Principal Component Analysis Approximation Model via the Weighted ℓ <sub>p</sub>-Norm Regularization.
J. Sci. Comput., 2021
Newton's method for the parameterized generalized eigenvalue problem with nonsquare matrix pencils.
Adv. Comput. Math., 2021
Proceedings of the Web and Big Data - 5th International Joint Conference, 2021
2020
SIAM J. Imaging Sci., 2020
A Riemannian Optimization Approach for Solving the Generalized Eigenvalue Problem for Nonsquare Matrix Pencils.
J. Sci. Comput., 2020
J. Comput. Appl. Math., 2020
2019
Relaxation methods for solving the tensor equation arising from the higher-order Markov chains.
Numer. Linear Algebra Appl., 2019
Numer. Algorithms, 2019
A C-eigenvalue problem for tensors with applications to higher-order multivariate Markov chains.
Comput. Math. Appl., 2019
2018
A preconditioned general modulus-based matrix splitting iteration method for linear complementarity problems of H-matrices.
Numer. Algorithms, 2018
Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse.
Numer. Algorithms, 2018
J. Comput. Appl. Math., 2018
J. Comput. Appl. Math., 2018
The relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems of positive definite matrices.
Appl. Math. Comput., 2018
2017
A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems.
Numer. Algorithms, 2017
Rank constrained matrix best approximation problem with respect to (skew) Hermitian matrices.
J. Comput. Appl. Math., 2017
2016
On the restrictively preconditioned conjugate gradient method for solving saddle point problems.
Int. J. Comput. Math., 2016
Comput. Methods Appl. Math., 2016
2015
Numerische Mathematik, 2015
Numer. Algorithms, 2015
The modulus-based nonsmooth Newton's method for solving linear complementarity problems.
J. Comput. Appl. Math., 2015
2014
Numer. Algorithms, 2014
Adv. Numer. Anal., 2014
2013
Numer. Linear Algebra Appl., 2013
Numer. Linear Algebra Appl., 2013
A general modulus-based matrix splitting method for linear complementarity problems of <i>H</i>H-matrices.
Appl. Math. Lett., 2013
2012
SIAM J. Matrix Anal. Appl., 2012
J. Comput. Appl. Math., 2012
On computation of the steady-state probability distribution of probabilistic Boolean networks with gene perturbation.
J. Comput. Appl. Math., 2012
2011
Numer. Linear Algebra Appl., 2011
A matrix perturbation method for computing the steady-state probability distributions of probabilistic Boolean networks with gene perturbations.
J. Comput. Appl. Math., 2011
New preconditioners based on symmetric-triangular decomposition for saddle point problems.
Computing, 2011
2010
J. Comput. Appl. Math., 2010
J. Comput. Appl. Math., 2010
Appl. Math. Comput., 2010
2008
Appl. Math. Lett., 2008
Appl. Math. Comput., 2008
2007
SIAM J. Matrix Anal. Appl., 2007
2006
Numer. Linear Algebra Appl., 2006
2005
Numer. Linear Algebra Appl., 2005
2003
2002
SIAM J. Matrix Anal. Appl., 2002