Vijay Gupta
Orcid: 0000-0002-5768-5763Affiliations:
- Netaji Subhas Institute of Technology, Department of Mathematics, New Delhi, India
According to our database1,
Vijay Gupta
authored at least 51 papers
between 2004 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Comput. Appl. Math., October, 2024
J. Appl. Math. Comput., August, 2024
J. Appl. Math. Comput., June, 2024
Math. Found. Comput., 2024
2020
Difference of Some Positive Linear Approximation Operators for Higher-Order Derivatives.
Symmetry, 2020
2019
Numer. Algorithms, 2019
2017
2015
Appl. Math. Comput., 2015
Appl. Math. Comput., 2015
Appl. Math. Comput., 2015
2014
Approximation by complex Phillips-Stancu operators in compact disks under exponential growth conditions.
Appl. Math. Comput., 2014
2013
2012
Math. Comput. Model., 2012
Appl. Math. Comput., 2012
Appl. Math. Comput., 2012
2011
Appl. Math. Comput., 2011
Appl. Math. Comput., 2011
2010
2009
Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation.
Appl. Math. Lett., 2009
Appl. Math. Comput., 2009
2008
Appl. Math. Comput., 2008
Appl. Math. Comput., 2008
2007
Appl. Math. Comput., 2007
Modified Householder iterative method free from second derivatives for nonlinear equations.
Appl. Math. Comput., 2007
2006
Math. Comput. Model., 2006
Math. Comput. Model., 2006
Approximation of bounded variation functions by a Bézier variant of the Bleimann, Butzer, and Hahn operators.
Int. J. Math. Math. Sci., 2006
Int. J. Math. Math. Sci., 2006
2005
Math. Comput. Model., 2005
Rate of convergence of beta operators of second kind for functions with derivatives of bounded variation.
Int. J. Math. Math. Sci., 2005
Appl. Math. Lett., 2005
Appl. Math. Lett., 2005
2004
The complete asymptotic expansionfor a general Durrmeyer variant of the Meyer-Konig and Zeller operators.
Math. Comput. Model., 2004
Int. J. Math. Math. Sci., 2004
Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators.
Int. J. Math. Math. Sci., 2004