Víctor J. García-Garrido

Orcid: 0000-0003-0557-3193

According to our database1, Víctor J. García-Garrido authored at least 14 papers between 2011 and 2022.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2022
Exploring Dynamical Matching and Recrossing on a Mesa Potential Energy Surface.
Int. J. Bifurc. Chaos, 2022

Bifurcation study on a degenerate double van der Waals cirque potential energy surface using Lagrangian descriptors.
Commun. Nonlinear Sci. Numer. Simul., 2022

Painting the phase space of dissipative systems with Lagrangian descriptors.
Commun. Nonlinear Sci. Numer. Simul., 2022

2021
LDDS: Python package for computing and visualizing Lagrangian Descriptors for Dynamical Systems.
J. Open Source Softw., 2021

Transport and roaming on the double van der Waals potential energy surface.
Commun. Nonlinear Sci. Numer. Simul., 2021

Visualizing the phase space of the HeI2 van der Waals complex using Lagrangian descriptors.
Commun. Nonlinear Sci. Numer. Simul., 2021

2020
Detection of Dynamical Matching in a Caldera Hamiltonian System Using Lagrangian Descriptors.
Int. J. Bifurc. Chaos, 2020

Tilting and Squeezing: Phase Space Geometry of Hamiltonian Saddle-Node Bifurcation and its Influence on Chemical Reaction Dynamics.
Int. J. Bifurc. Chaos, 2020

An Extension of Discrete Lagrangian Descriptors for Unbounded Maps.
Int. J. Bifurc. Chaos, 2020

Exploring isomerization dynamics on a potential energy surface with an index-2 saddle using lagrangian descriptors.
Commun. Nonlinear Sci. Numer. Simul., 2020

Unveiling the fractal structure of Julia sets with Lagrangian descriptors.
Commun. Nonlinear Sci. Numer. Simul., 2020

2019
Finding NHIM: Identifying high dimensional phase space structures in reaction dynamics using Lagrangian descriptors.
Commun. Nonlinear Sci. Numer. Simul., 2019

2017
A Theoretical Framework for Lagrangian Descriptors.
Int. J. Bifurc. Chaos, 2017

2011
Evolution and Breakup of Viscous Rotating Drops.
SIAM J. Appl. Math., 2011


  Loading...