Viatcheslav P. Grishukhin

According to our database1, Viatcheslav P. Grishukhin authored at least 24 papers between 1990 and 2014.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2014
On the sum of a parallelotope and a zonotope.
Eur. J. Comb., 2014

2009
The decomposition of the hypermetric cone into L-domains.
Eur. J. Comb., 2009

2007
How to compute the rank of a Delaunay polytope.
Eur. J. Comb., 2007

2006
Infinite series of extreme Delaunay polytopes.
Eur. J. Comb., 2006

2004
Properties of parallelotopes equivalent to Voronoi's conjecture.
Eur. J. Comb., 2004

Scale-isometric polytopal graphs in hypercubes and cubic lattices - polytopes in hypercubes and Z<sub>n</sub>.
Imperial College Press, ISBN: 978-1-86094-421-5, 2004

2002
There are Exactly 222 L-types of Primitive Five-dimensional Lattices.
Eur. J. Comb., 2002

2001
Allowed Boundary Sequences for Fused Polycyclic Patches and Related Algorithmic Problems.
J. Chem. Inf. Comput. Sci., 2001

An Example of a Non-simplicial<i>L</i>-type Domain.
Eur. J. Comb., 2001

Non-rigidity Degree of a Lattice and Rigid Lattices.
Eur. J. Comb., 2001

1999
Maximal Unimodular Systems of Vectors.
Eur. J. Comb., 1999

1998
Fullerenes and coordination polyhedra versus half-cube embeddings.
Discret. Math., 1998

1997
Regular Two-graphs from the Even Unimodular Lattice E<sub>8</sub> + E<sub>8</sub>.
Eur. J. Comb., 1997

The skeleton of the 120-cell is not 5-gonal.
Discret. Math., 1997

Clin D'oeil on L<sub>1</sub>-embeddable Planar Graphs.
Discret. Appl. Math., 1997

1996
Cut Lattices and Equiangular Lines.
Eur. J. Comb., 1996

1995
L-polytopes and Equiangular Lines.
Discret. Appl. Math., 1995

1994
Lattice Points of Cut Cones.
Comb. Probab. Comput., 1994

1993
The hypermetric cone is polydedral.
Comb., 1993

Hypermetrics in geometry of numbers.
Proceedings of the Combinatorial Optimization, 1993

1992
Computing extreme rays of the metric cone for seven points.
Eur. J. Comb., 1992

A Bound on the K-gonality of Facets of the Hypermetric Cone and Related Complexity Problems.
Comput. Geom., 1992

1990
All Facets of the Cut Cone C<sub>n</sub> for n = 7 are Known.
Eur. J. Comb., 1990

The Symmetries of the Cut Polytope and of Some Relatives.
Proceedings of the Applied Geometry And Discrete Mathematics, 1990


  Loading...