Tyler Chen

Orcid: 0000-0002-1187-1026

According to our database1, Tyler Chen authored at least 21 papers between 2019 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Near-optimal hierarchical matrix approximation from matrix-vector products.
CoRR, 2024

Near-optimal convergence of the full orthogonalization method.
CoRR, 2024

Fixed-sparsity matrix approximation from matrix-vector products.
CoRR, 2024

2023
Krylov-Aware Stochastic Trace Estimation.
SIAM J. Matrix Anal. Appl., September, 2023

Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation.
SIAM J. Matrix Anal. Appl., June, 2023

Faster randomized partial trace estimation.
CoRR, 2023

A spectrum adaptive kernel polynomial method.
CoRR, 2023

Optimal Polynomial Approximation to Rational Matrix Functions Using the Arnoldi Algorithm.
CoRR, 2023

Near-Optimality Guarantees for Approximating Rational Matrix Functions by the Lanczos Method.
CoRR, 2023

GMRES, pseudospectra, and Crouzeix's conjecture for shifted and scaled Ginibre matrices.
CoRR, 2023

Stability of the Lanczos algorithm on matrices with regular spectral distributions.
CoRR, 2023

2022
Error Bounds for Lanczos-Based Matrix Function Approximation.
SIAM J. Matrix Anal. Appl., 2022

A posteriori error bounds for the block-Lanczos method for matrix function approximation.
CoRR, 2022

On the fast convergence of minibatch heavy ball momentum.
CoRR, 2022

Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems.
CoRR, 2022

Randomized matrix-free quadrature for spectrum and spectral sum approximation.
CoRR, 2022

2021
On the Convergence Rate of Variants of the Conjugate Gradient Algorithm in Finite Precision Arithmetic.
SIAM J. Sci. Comput., 2021

Analysis of stochastic Lanczos quadrature for spectrum approximation.
Proceedings of the 38th International Conference on Machine Learning, 2021

2020
Predict-and-Recompute Conjugate Gradient Variants.
SIAM J. Sci. Comput., 2020

Rounding random variables to finite precision.
CoRR, 2020

2019
Predict-and-recompute conjugate gradient variants.
CoRR, 2019


  Loading...