Tushar Bag
Orcid: 0000-0002-7613-8351
According to our database1,
Tushar Bag
authored at least 20 papers
between 2018 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
2018
2019
2020
2021
2022
2023
2024
2025
0
1
2
3
4
5
6
7
1
2
3
1
4
6
2
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
Finite Fields Their Appl., 2025
2024
2023
Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings $ \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]$.
Cryptogr. Commun., May, 2023
On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes.
Cryptogr. Commun., 2023
2022
Constacyclic codes over $${\pmb {\mathbb {F}}}_{q^2}[u]/\langle u^2-w^2 \rangle $$ and their application in quantum code construction.
J. Appl. Math. Comput., December, 2022
2021
J. Appl. Math. Comput., October, 2021
Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes.
Quantum Inf. Process., 2021
Discret. Math., 2021
Discret. Math., 2021
2020
IEEE Commun. Lett., 2020
Quantum codes from skew constacyclic codes over the ring Fq[u, v]∕〈u2-1, v2-1, uv-vu〉.
Discret. Math., 2020
A Study of F<sub>q</sub>R-Cyclic Codes and Their Applications in Constructing Quantum Codes.
IEEE Access, 2020
On the Structure of Cyclic Codes Over 𝔽<sub>q</sub>RS and Applications in Quantum and LCD Codes Constructions.
IEEE Access, 2020
Quantum Codes Obtained From Constacyclic Codes Over a Family of Finite Rings F<sub>p</sub>[u₁, u₂, ..., u<sub>s</sub>].
IEEE Access, 2020
Explicit Representation and Enumeration of Repeated-Root (δ + αu²)-Constacyclic Codes Over F₂<sup>m</sup>[u]/‹u<sup>2λ</sup>›.
IEEE Access, 2020
2019
A class of constacyclic codes over $${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$ Z 4 [ u ] / ⟨ u k ⟩.
J. Appl. Math. Comput., June, 2019
Quantum codes from \((1-2u_1-2u_2-\cdots -2u_m)\) -skew constacyclic codes over the ring \(F_q+u_1F_{q}+\cdots +u_{2m}F_{q}\).
Quantum Inf. Process., 2019
2018
Discret. Math. Algorithms Appl., 2018