Tsunehiro Yoshinaga

According to our database1, Tsunehiro Yoshinaga authored at least 19 papers between 1986 and 2020.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2020
Non-Closure Properties of Multi-Inkdot Nondeterministic Turing Machines with Sublogarithmic Space.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2020

2018
k-Neighborhood Template A-Type Two-Dimensional Bounded Cellular Acceptors.
J. Robotics Netw. Artif. Life, 2018

2016
Some properties of.
J. Robotics Netw. Artif. Life, 2016

2014
Hierarchy Based on Neighborhood Template about k-Neighborhood Template A-Type Three-Dimensional Bounded Cellular Acceptor.
J. Robotics Netw. Artif. Life, 2014

Hierarchy Based on Configuration-Reader about k-Neighborhood Template A-Type Three-Dimensional Bounded Cellular Acceptor.
J. Robotics Netw. Artif. Life, 2014

Homogeneous Systolic Pyramid Automata with n-Dimensional Layers.
J. Robotics Netw. Artif. Life, 2014

Some Accepting Powers of Bottom-Up Pyramid Cellular Acceptors with n-dimensional Layers.
J. Robotics Netw. Artif. Life, 2014

Remarks on Recognizability of Four-Dimensional Topological Components.
J. Robotics Netw. Artif. Life, 2014

A Note on Cooperating Systems of One-Way Alternating Finite Automata with Only Universal States.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2014

2012
Cooperating systems of four-dimensional finite automata.
Artif. Life Robotics, 2012

Bottom-up pyramid cellular acceptors with four-dimensional layers.
Artif. Life Robotics, 2012

2010
Non-closure Properties of 1-Inkdot Nondeterministic Turing Machines and Alternating Turing Machines with Only Universal States Using Small Space.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2010

2006
A Note on Non-Closure Property of Sublogarithmic Space-Bounded 1-Inkdot Alternating Pushdown Automata with Only Existential (Universal) States.
J. Comput. Sci. Technol., 2006

Sublogarithmic Space-Bounded Multi-Inkdot Alternating Turing Machines with Only Existential (Universal) States.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2006

2003
Las Vegas, Self-Verifying Nondeterministic and Deterministic One-Way Multi-Counter Automata with Bounded Time.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2003

2001
Alternation for sublogarithmic space-bounded alternating pushdown automata.
Theor. Comput. Sci., 2001

1995
Alternating Finite Automata with Counters and Stack-Counters Operating in Realtime.
IEICE Trans. Inf. Syst., 1995

1993
A Note on Multi-Inkdot Nondeterministic Turing Machines with Small Space.
Inf. Process. Lett., 1993

1986
Deadlock detection algorithm with level number.
Syst. Comput. Jpn., 1986


  Loading...