Troy D. Butler

Orcid: 0000-0001-7177-3105

According to our database1, Troy D. Butler authored at least 15 papers between 2011 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
A Distributions-Based Approach for Data-Consistent Inversion.
SIAM J. Sci. Comput., 2024

2022
Parameter Estimation with Maximal Updated Densities.
CoRR, 2022

2020
Optimal experimental design for prediction based on push-forward probability measures.
J. Comput. Phys., 2020

Learning Quantities of Interest from Dynamical Systems for Observation-Consistent Inversion.
CoRR, 2020

2018
Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification.
SIAM J. Sci. Comput., 2018

Combining Push-Forward Measures and Bayes' Rule to Construct Consistent Solutions to Stochastic Inverse Problems.
SIAM J. Sci. Comput., 2018

2017
A Measure-Theoretic Interpretation of Sample Based Numerical Integration with Applications to Inverse and Prediction Problems under Uncertainty.
SIAM J. Sci. Comput., 2017

2015
Quantifying uncertainty in material damage from vibrational data.
J. Comput. Phys., 2015

2014
A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest.
SIAM/ASA J. Uncertain. Quantification, 2014

2013
Propagation of Uncertainties Using Improved Surrogate Models.
SIAM/ASA J. Uncertain. Quantification, 2013

2012
A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis.
SIAM J. Numer. Anal., 2012

A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods.
SIAM J. Matrix Anal. Appl., 2012

Reparameterization for statistical state estimation applied to differential equations.
J. Comput. Phys., 2012

2011
A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions.
SIAM J. Sci. Comput., 2011

A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis.
SIAM J. Numer. Anal., 2011


  Loading...