Tristan Pryer

Orcid: 0000-0003-4499-0563

According to our database1, Tristan Pryer authored at least 19 papers between 2011 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of five.

Timeline

2012
2014
2016
2018
2020
2022
2024
0
1
2
3
4
5
6
7
1
6
2
2
2
2
1
1
1
1

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
Discretisation of an Oldroyd-B viscoelastic fluid flow using a Lie derivative formulation.
Adv. Comput. Math., February, 2025

2024
Duality-Based Error Control for the Signorini Problem.
SIAM J. Numer. Anal., 2024

Optimal control of a kinetic equation.
CoRR, 2024

Cycle-Free Polytopal Mesh Sweeping for Boltzmann Transport.
CoRR, 2024

A Deep Uzawa-Lagrange Multiplier Approach for Boundary Conditions in PINNs and Deep Ritz Methods.
CoRR, 2024

Deep Uzawa for PDE constrained optimisation.
CoRR, 2024

A nodally bound-preserving discontinuous Galerkin method for the drift-diffusion equation.
CoRR, 2024

2023
A nodally bound-preserving finite element method for reaction-convection-diffusion equations.
CoRR, 2023

A Nodally Bound-Preserving Finite Element Method.
CoRR, 2023

2021
Residual Estimates for Post-processors in Elliptic Problems.
J. Sci. Comput., 2021

Adaptive modelling of variably saturated seepage problems.
CoRR, 2021

2017
A posteriori error estimates for the virtual element method.
Numerische Mathematik, 2017

Noether-Type Discrete Conserved Quantities Arising from a Finite Element Approximation of a Variational Problem.
Found. Comput. Math., 2017

2015
A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws.
SIAM J. Numer. Anal., 2015

A comparison of duality and energy a posteriori estimates for L<sub>∞</sub>(0, T;L<sub>2</sub>(Ω)) in parabolic problems.
Math. Comput., 2015

2014
Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system.
Math. Comput., 2014

2013
A Finite Element Method for Nonlinear Elliptic Problems.
SIAM J. Sci. Comput., 2013

An Adaptive Finite Element Method for the Infinity Laplacian.
Proceedings of the Numerical Mathematics and Advanced Applications - ENUMATH 2013, 2013

2011
A Finite Element Method for Second Order Nonvariational Elliptic Problems.
SIAM J. Sci. Comput., 2011


  Loading...