Tomas Sauer
Orcid: 0000-0002-3182-2141Affiliations:
- University of Passau, Germany
According to our database1,
Tomas Sauer
authored at least 54 papers
between 1991 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
1995
2000
2005
2010
2015
2020
0
1
2
3
4
5
1
2
3
1
3
3
2
2
3
1
2
1
1
3
2
2
3
1
3
1
4
1
2
1
1
1
2
1
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
-
on d-nb.info
On csauthors.net:
Bibliography
2024
J. Symb. Comput., 2024
2023
Proceedings of the 17th IEEE International Conference on Semantic Computing, 2023
2022
2021
J. Approx. Theory, 2021
2020
Math. Comput. Simul., 2020
J. Math. Imaging Vis., 2020
Detection and Monitoring of Bottom-Up Cracks in Road Pavement Using a Machine-Learning Approach.
Algorithms, 2020
2019
Numerische Mathematik, 2019
Frontiers Appl. Math. Stat., 2019
2018
J. Symb. Comput., 2018
Comput. Aided Geom. Des., 2018
2017
2016
Numer. Linear Algebra Appl., 2016
Factorization of Hermite subdivision operators preserving exponentials and polynomials.
Adv. Comput. Math., 2016
Reconstructing Sparse Exponential Polynomials from Samples: Difference Operators, Stirling Numbers and Hermite Interpolation.
Proceedings of the Mathematical Methods for Curves and Surfaces, 2016
2015
Adv. Comput. Math., 2015
2014
Comput. Aided Geom. Des., 2014
2012
Adv. Comput. Math., 2012
Proceedings of the Mathematical Methods for Curves and Surfaces, 2012
Proceedings of the Mathematical Methods for Curves and Surfaces, 2012
2011
J. Comput. Appl. Math., 2011
2010
J. Comput. Appl. Math., 2010
J. Approx. Theory, 2010
J. Approx. Theory, 2010
2009
SIAM J. Math. Anal., 2009
J. Approx. Theory, 2009
2007
Numer. Algorithms, 2007
2006
Conventional and wavelet coherence applied to sensory-evoked electrical brain activity.
IEEE Trans. Biomed. Eng., 2006
Adv. Comput. Math., 2006
2005
2004
Multivariate Refinable Functions of High Approximation Order Via Quotient Ideals of Laurent Polynomials.
Adv. Comput. Math., 2004
2003
Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains.
Comput. Aided Geom. Des., 2003
2002
How to Achieve Minimax Expected Kullback-Leibler Distance from an Unknown Finite Distribution.
Proceedings of the Algorithmic Learning Theory, 13th International Conference, 2002
2000
SIAM J. Numer. Anal., 2000
1997
1995
Adv. Comput. Math., 1995
1991