Todd Arbogast
Orcid: 0000-0001-9692-5478Affiliations:
- University of Texas at Austin, USA
According to our database1,
Todd Arbogast
authored at least 32 papers
between 1998 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
On csauthors.net:
Bibliography
2023
Multidimensional WENO-AO Reconstructions Using a Simplified Smoothness Indicator and Applications to Conservation Laws.
J. Sci. Comput., October, 2023
Numer. Algorithms, 2023
A new time-domain finite element method for simulating surface plasmon polaritons on graphene sheets.
Comput. Math. Appl., 2023
2022
Numerische Mathematik, 2022
J. Sci. Comput., 2022
2019
Construction of \(H({\mathrm{div}})\) -conforming mixed finite elements on cuboidal hexahedra.
Numerische Mathematik, 2019
Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes.
J. Comput. Phys., 2019
2018
Accuracy of WENO and Adaptive Order WENO Reconstructions for Solving Conservation Laws.
SIAM J. Numer. Anal., 2018
J. Sci. Comput., 2018
A Hybridized Discontinuous Galerkin Method for A Linear Degenerate Elliptic Equation Arising from Two-Phase Mixtures.
CoRR, 2018
2017
Mixed Methods for Two-Phase Darcy-Stokes Mixtures of Partially Melted Materials with Regions of Zero Porosity.
SIAM J. Sci. Comput., 2017
2016
SIAM J. Numer. Anal., 2016
SIAM J. Numer. Anal., 2016
A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws.
J. Comput. Phys., 2016
2015
A Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Parabolic Problems Coupled through a Boundary.
SIAM/ASA J. Uncertain. Quantification, 2015
J. Sci. Comput., 2015
2014
A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws.
J. Comput. Phys., 2014
2013
A Multiscale Mortar Mixed Space Based on Homogenization for Heterogeneous Elliptic Problems.
SIAM J. Numer. Anal., 2013
2012
A Locally Conservative Eulerian-Lagrangian Method for a Model Two-Phase Flow Problem in a One-Dimensional Porous Medium.
SIAM J. Sci. Comput., 2012
A Fully Conservative Eulerian-Lagrangian Stream-Tube Method for Advection-Diffusion Problems.
SIAM J. Sci. Comput., 2012
J. Comput. Phys., 2012
2011
Stability, Monotonicity, Maximum and Minimum Principles, and Implementation of the Volume Corrected Characteristic Method.
SIAM J. Sci. Comput., 2011
Multiscale Model. Simul., 2011
2010
Convergence of a Fully Conservative Volume Corrected Characteristic Method for Transport Problems.
SIAM J. Numer. Anal., 2010
A fully conservative Eulerian-Lagrangian method for a convection-diffusion problem in a solenoidal field.
J. Comput. Phys., 2010
2007
2006
A Fully Mass and Volume Conserving Implementation of a Characteristic Method for Transport Problems.
SIAM J. Sci. Comput., 2006
2005
A Family of Rectangular Mixed Elements with a Continuous Flux for Second Order Elliptic Problems.
SIAM J. Numer. Anal., 2005
2004
Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems.
SIAM J. Numer. Anal., 2004
2000
SIAM J. Numer. Anal., 2000
1998
Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry.
SIAM J. Sci. Comput., 1998