Tibor K. Pogány
Orcid: 0000-0002-4635-8257Affiliations:
- University of Rijeka, Croatia
- Óbuda University, Budapest, Hungary
According to our database1,
Tibor K. Pogány
authored at least 34 papers
between 1991 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
On csauthors.net:
Bibliography
2025
J. Comput. Appl. Math., 2025
2024
On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities.
Axioms, August, 2024
2023
Extension of Mathieu series and alternating Mathieu series involving the Neumann function Y<sub>ν</sub>.
Period. Math. Hung., March, 2023
2022
Axioms, 2022
2021
Commun. Nonlinear Sci. Numer. Simul., 2021
Non-Debye relaxations: Smeared time evolution, memory effects, and the Laplace exponents.
Commun. Nonlinear Sci. Numer. Simul., 2021
2019
Axioms, 2019
2018
2016
Proceedings of the 11th IEEE International Symposium on Applied Computational Intelligence and Informatics, 2016
2015
Proceedings of the 10th IEEE Jubilee International Symposium on Applied Computational Intelligence and Informatics, 2015
2014
Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity.
J. Frankl. Inst., 2014
Proceedings of the 9th IEEE International Symposium on Applied Computational Intelligence and Informatics, 2014
2013
CoRR, 2013
Proceedings of the IEEE 8th International Symposium on Applied Computational Intelligence and Informatics, 2013
2012
2011
Math. Comput. Model., 2011
Comput. Math. Appl., 2011
Appl. Math. Lett., 2011
2009
Comput. Math. Appl., 2009
2008
On Mathieu-type series whose terms contain a generalized hypergeometric function <sub>p</sub>F<sub>q</sub> and Meijer's G-function.
Math. Comput. Model., 2008
2007
Appl. Math. Lett., 2007
Whittaker-type derivative sampling reconstruction of stochastic L<sup>alpha</sup>(Omega)-processes.
Appl. Math. Comput., 2007
2006
A linear ODE for the Omega function associated with the Euler function <i>E</i><sub><i>alpha</i></sub>(<i>z</i>) and the Bernoulli function <i>B</i><sub><i>alpha</i></sub>(<i>z</i>).
Appl. Math. Lett., 2006
Appl. Math. Comput., 2006
1996
Signal Process., 1996
1993
Signal Process., 1993
1991
IEEE Trans. Signal Process., 1991