Tianxiang Zhao

Orcid: 0000-0003-4504-7809

According to our database1, Tianxiang Zhao authored at least 36 papers between 2018 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Towards Inductive and Efficient Explanations for Graph Neural Networks.
IEEE Trans. Pattern Anal. Mach. Intell., August, 2024

Improving resilience of cyber-physical power systems against cyber attacks through strategic energy storage deployment.
Reliab. Eng. Syst. Saf., 2024

Enhancing Data-Limited Graph Neural Networks by Actively Distilling Knowledge from Large Language Models.
CoRR, 2024

Analyzing and Reducing Catastrophic Forgetting in Parameter Efficient Tuning.
CoRR, 2024

Disambiguated Node Classification with Graph Neural Networks.
Proceedings of the ACM on Web Conference 2024, 2024

Interpretable Imitation Learning with Dynamic Causal Relations.
Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024

Distribution Consistency based Self-Training for Graph Neural Networks with Sparse Labels.
Proceedings of the 17th ACM International Conference on Web Search and Data Mining, 2024

SCFormer: A Vision Transformer with Split Channel in Sitting Posture Recognition.
Proceedings of the MultiMedia Modeling - 30th International Conference, 2024

Multi-source Unsupervised Domain Adaptation on Graphs with Transferability Modeling.
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024

FSMANet: Flash Shuffle Mix Attention Network for Human Sitting Posture Recognition.
Proceedings of the International Joint Conference on Neural Networks, 2024

Improved Attributed Graph Clustering with Representation and Structure Augmentation.
Proceedings of the International Joint Conference on Neural Networks, 2024

HC-GST: Heterophily-aware Distribution Consistency based Graph Self-training.
Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024

2023
Faithful and Consistent Graph Neural Network Explanations with Rationale Alignment.
ACM Trans. Intell. Syst. Technol., October, 2023

Dynamic DAG Discovery for Interpretable Imitation Learning.
CoRR, 2023

Towards Faithful and Consistent Explanations for Graph Neural Networks.
Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023

You Need to Look Globally: Discovering Representative Topology Structures to Enhance Graph Neural Network.
Proceedings of the Advances in Knowledge Discovery and Data Mining, 2023

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations.
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023

Patches Channel Attention for Human Sitting Posture Recognition.
Proceedings of the Artificial Neural Networks and Machine Learning, 2023

T-SaS: Toward Shift-aware Dynamic Adaptation for Streaming Data.
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023

2022
Synthetic Over-sampling for Imbalanced Node Classification with Graph Neural Networks.
CoRR, 2022

On Consistency in Graph Neural Network Interpretation.
CoRR, 2022

A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability.
CoRR, 2022

Evaluating the potential of H8/AHI geostationary observations for monitoring vegetation phenology over different ecosystem types in northern China.
Int. J. Appl. Earth Obs. Geoinformation, 2022

Exploring Edge Disentanglement for Node Classification.
Proceedings of the WWW '22: The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25, 2022

Towards Fair Classifiers Without Sensitive Attributes: Exploring Biases in Related Features.
Proceedings of the WSDM '22: The Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event / Tempe, AZ, USA, February 21, 2022

TopoImb: Toward Topology-Level Imbalance in Learning From Graphs.
Proceedings of the Learning on Graphs Conference, 2022

Explanation Guided Contrastive Learning for Sequential Recommendation.
Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022

2021
Fair and Effective Policing for Neighborhood Safety: Understanding and Overcoming Selection Biases.
Frontiers Big Data, 2021

Times Series Forecasting for Urban Building Energy Consumption Based on Graph Convolutional Network.
CoRR, 2021

You Can Still Achieve Fairness Without Sensitive Attributes: Exploring Biases in Non-Sensitive Features.
CoRR, 2021

GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks.
Proceedings of the WSDM '21, 2021

2020
Emotion Embedded Pose Generation.
Proceedings of the Computer Vision - ECCV 2020 Workshops, 2020

Semi-Supervised Graph-to-Graph Translation.
Proceedings of the CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, 2020

Balancing Quality and Human Involvement: An Effective Approach to Interactive Neural Machine Translation.
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020

2018
Zero-Shot Learning: An Energy Based Approach.
Proceedings of the IEEE International Conference on Data Mining, 2018

Tracking and Forecasting Dynamics in Crowdfunding: A Basis-Synthesis Approach.
Proceedings of the IEEE International Conference on Data Mining, 2018


  Loading...