Thomas W. Cusick

Orcid: 0000-0002-0087-8855

Affiliations:
  • University at Buffalo, Department of Mathematics, Buffalo, NY, USA


According to our database1, Thomas W. Cusick authored at least 67 papers between 1974 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Using easy coefficients conjecture for rotation symmetric Boolean functions.
Inf. Sci., February, 2024

Quadratic rotation symmetric Boolean functions.
Discret. Appl. Math., January, 2024

Construction and enumeration of balanced rotation symmetric Boolean functions.
Discret. Appl. Math., 2024

2023
The weight recursions for the 2-rotation symmetric quartic Boolean functions.
Adv. Math. Commun., 2023

2022
Symbolic dynamics and rotation symmetric Boolean functions.
Cryptogr. Commun., 2022

2021
Weights for short quartic Boolean functions.
Inf. Sci., 2021

Simpler proof for nonlinearity of majority function.
Discret. Appl. Math., 2021

2020
Equivalence of 2-rotation symmetric quartic Boolean functions.
Inf. Sci., 2020

Affine equivalence for quadratic rotation symmetric Boolean functions.
Des. Codes Cryptogr., 2020

2018
Weight Recursions for Any Rotation Symmetric Boolean Functions.
IEEE Trans. Inf. Theory, 2018

Affine equivalence classes of 2-rotation symmetric cubic Boolean functions.
Int. J. Comput. Math. Comput. Syst. Theory, 2018

2017
Geospatial cryptography: enabling researchers to access private, spatially referenced, human subjects data for cancer control and prevention.
J. Geogr. Syst., 2017

Highly nonlinear plateaued functions.
IET Inf. Secur., 2017

Weight = nonlinearity for all small weight Boolean functions.
CoRR, 2017

Rotation Symmetric Bent Boolean Functions for n = 2p.
CoRR, 2017

2016
Affine equivalence of monomial rotation symmetric Boolean functions: A Pólya's theorem approach.
J. Math. Cryptol., 2016

Hamming weights of symmetric Boolean functions.
Discret. Appl. Math., 2016

Counting equivalence classes for monomial rotation symmetric Boolean functions with prime dimension.
Cryptogr. Commun., 2016

2015
Theory of 3-rotation symmetric cubic Boolean functions.
J. Math. Cryptol., 2015

Permutation equivalence of cubic rotation symmetric Boolean functions.
Int. J. Comput. Math., 2015

Theory of 2-rotation symmetric cubic Boolean functions.
Des. Codes Cryptogr., 2015

Recursion orders for weights of Boolean cubic rotation symmetric functions.
Discret. Appl. Math., 2015

Initial results on the rotation symmetric bent-negabent functions.
Proceedings of the Seventh International Workshop on Signal Design and its Applications in Communications, 2015

2014
Affine equivalence of quartic homogeneous rotation symmetric Boolean functions.
Inf. Sci., 2014

Families of rotation symmetric functions with useful cryptographic properties.
IET Inf. Secur., 2014

Affine equivalence for cubic rotation symmetric Boolean functions with n=pq variables.
Discret. Math., 2014

Counting rotation symmetric functions using Polya's theorem.
Discret. Appl. Math., 2014

2013
Finding Hamming weights without looking at truth tables.
Cryptogr. Commun., 2013

Equivalence classes for cubic rotation symmetric functions.
Cryptogr. Commun., 2013

2012
Recursive weights for some Boolean functions.
J. Math. Cryptol., 2012

Affine equivalence for rotation symmetric Boolean functions with p<sup>k</sup> variables.
Finite Fields Their Appl., 2012

Affine equivalence for rotation symmetric Boolean functions with 2 k variables.
Des. Codes Cryptogr., 2012

A recursive formula for weights of Boolean rotation symmetric functions.
Discret. Appl. Math., 2012

Weights of Boolean cubic monomial rotation symmetric functions.
Cryptogr. Commun., 2012

2011
Sum of digits sequences modulo m.
Theor. Comput. Sci., 2011

Affine equivalence of cubic homogeneous rotation symmetric functions.
Inf. Sci., 2011

2010
A refinement of Cusick-Cheon bound for the second order binary Reed-Muller code.
Discret. Math., 2010

Affine equivalence of cubic homogeneous rotation symmetric Boolean functions
CoRR, 2010

2009
On a conjecture for balanced symmetric Boolean functions.
J. Math. Cryptol., 2009

On a Combinatorial Conjecture.
IACR Cryptol. ePrint Arch., 2009

2008
Balanced Symmetric Functions Over GF(p).
IEEE Trans. Inf. Theory, 2008

2007
Strict avalanche criterion over finite fields.
J. Math. Cryptol., 2007

Counting Balanced Boolean Functions in <i>n</i> Variables with Bounded Degree.
Exp. Math., 2007

On the delta sequence of the Thue-Morse sequence.
Australas. J Comb., 2007

2006
Linear structures of symmetric functions over finite fields.
Inf. Process. Lett., 2006

2005
Polynomials over base 2 finite fields with evenly distributed values.
Finite Fields Their Appl., 2005

<i>k</i>-th order symmetric SAC boolean functions and bisecting binomial coefficients.
Discret. Appl. Math., 2005

2002
Fast evaluation, weights and nonlinearity of rotation-symmetric functions.
Discret. Math., 2002

2001
A conjecture on binary sequences with the "Trinomial property".
IEEE Trans. Inf. Theory, 2001

Computer Licence Plates.
Comput. Secur., 2001

2000
[untitled].
Am. Math. Mon., 2000

1999
The Ajtai Random Class of Lattices.
Theor. Comput. Sci., 1999

A Lattice-Based Public-Key Cryptosystem.
Inf. Comput., 1999

1998
Value Sets of Some Polynomials Over Finite Fields GF(2<sup>2m</sup>).
SIAM J. Comput., 1998

Finite Vector Spaces and Certain Lattices.
Electron. J. Comb., 1998

On Constructing Balanced Correlation Immune Functions.
Proceedings of the Sequences and their Applications, 1998

1997
Counting the n-Chromos of I. J. Schoenberg.
J. Comb. Theory A, 1997

1996
Some new three-valued crosscorrelation functions for binary m-sequences.
IEEE Trans. Inf. Theory, 1996

Bounds on the Number of Functions Satisfying the Strict Avalanche Criterion.
Inf. Process. Lett., 1996

Bounds on the Number of Functions Satisfying the Strict Avalanche Criterion.
Inf. Process. Lett., 1996

A Comparison of RSA and the Naccache-Stern Public-Key Cryptosystem.
Proceedings of the Security Protocols, 1996

1995
Properties of the x<sup>2</sup> mod N pseudorandom number generator.
IEEE Trans. Inf. Theory, 1995

Cryptanalysis of a Public Key System Based on Diophantine Equations.
Inf. Process. Lett., 1995

1993
Boolean Functions Satisfying a Higher Order Strict Avalanche Criterion.
Proceedings of the Advances in Cryptology, 1993

1990
The REDOC II Cryptosystem.
Proceedings of the Advances in Cryptology, 1990

1989
Recurrences for sums of powers of binomial coefficients.
J. Comb. Theory A, 1989

1974
View-Obstruction Problems in n-Dimensional Geometry.
J. Comb. Theory A, 1974


  Loading...