Théo Ryffel

Orcid: 0000-0002-2271-3234

According to our database1, Théo Ryffel authored at least 14 papers between 2018 and 2023.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Annotation d'entités cliniques en utilisant les Larges Modèles de Langue.
Proceedings of the Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles, TALN 2023 - Volume 1 : travaux de recherche originaux, 2023

Annotate French Clinical Data Using Large Language Model Predictions.
Proceedings of the 11th IEEE International Conference on Healthcare Informatics, 2023

Large Language Models as Instructors: A Study on Multilingual Clinical Entity Extraction.
Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, 2023

2022
Cryptography for Privacy-Preserving Machine Learning. (Cryptographie pour l'apprentissage automatique respectueux de la vie privée).
PhD thesis, 2022

AriaNN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing.
Proc. Priv. Enhancing Technol., 2022

Differential Privacy Guarantees for Stochastic Gradient Langevin Dynamics.
CoRR, 2022

2021
End-to-end privacy preserving deep learning on multi-institutional medical imaging.
Nat. Mach. Intell., 2021

Syft 0.5: A Platform for Universally Deployable Structured Transparency.
CoRR, 2021

2020
Privacy-preserving medical image analysis.
CoRR, 2020

ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing.
CoRR, 2020

Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims.
CoRR, 2020

2019
Partially Encrypted Machine Learning using Functional Encryption.
CoRR, 2019

Partially Encrypted Deep Learning using Functional Encryption.
Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, 2019

2018
A generic framework for privacy preserving deep learning.
CoRR, 2018


  Loading...