Teresa Krick

According to our database1, Teresa Krick authored at least 24 papers between 1990 and 2020.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2020
Subresultants of (<i>x</i>-<i>α</i>)<sup><i>m</i></sup> and (<i>x</i>-<i>β</i>)<sup><i>n</i></sup>, Jacobi polynomials and complexity.
J. Symb. Comput., 2020

On local analysis.
J. Complex., 2020

2018
Computing the Homology of Real Projective Sets.
Found. Comput. Math., 2018

Subresultants of (x-α)<sup>m</sup> and (x-β)<sup>n</sup>, Jacobi polynomials and complexity.
CoRR, 2018

2015
Subresultants, Sylvester sums and the rational interpolation problem.
J. Symb. Comput., 2015

Foreword.
Found. Comput. Math., 2015

2012
Sylvester's double sums: An inductive proof of the general case.
J. Symb. Comput., 2012

A numerical algorithm for zero counting. III: Randomization and condition.
Adv. Appl. Math., 2012

2009
Sylvester's double sums: The general case.
J. Symb. Comput., 2009

A Numerical Algorithm for Zero Counting. II: Distance to Ill-posedness and Smoothed Analysis
CoRR, 2009

2008
A numerical algorithm for zero counting, I: Complexity and accuracy.
J. Complex., 2008

Guest Editor's Preface.
J. Complex., 2008

2007
An elementary proof of Sylvester's double sums for subresultants.
J. Symb. Comput., 2007

Factoring bivariate sparse (lacunary) polynomials.
J. Complex., 2007

2006
Newton-Hensel Interpolation Lifting.
Found. Comput. Math., 2006

2005
Guest editors' preface.
J. Complex., 2005

2004
The Computational Complexity of the Chow Form.
Found. Comput. Math., 2004

2000
Deformation Techniques for Efficient Polynomial Equation Solving.
J. Complex., 2000

1999
Arithmetic Nullstellensätze.
SIGSAM Bull., 1999

1997
On Intrinsic Bounds in the Nullstellensatz.
Appl. Algebra Eng. Commun. Comput., 1997

1993
(Working Group Noaï Fitchas) Algorithmic Aspects of Suslin's Proof of Serre's Conjecture.
Comput. Complex., 1993

1991
A Gemometrical Bound for Integer Programming with Polynomial Constraints.
Proceedings of the Fundamentals of Computation Theory, 8th International Symposium, 1991

An Algorithm for the Computation of the Radical of an Ideal in the Ring of Polynomials.
Proceedings of the Applied Algebra, 1991

1990
Geometric Problems Solvable in Single Exponential Time.
Proceedings of the Applied Algebra, 1990


  Loading...