Sze-Bi Hsu

According to our database1, Sze-Bi Hsu authored at least 19 papers between 1993 and 2020.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2020
A Holling Predator-Prey Model with Handling and Searching Predators.
SIAM J. Appl. Math., 2020

2019
Analysis of a Mathematical Model Arising from Barnacle-Algae-Mussel Interactions.
SIAM J. Appl. Math., 2019

2017
The Morbidostat: A Bio-reactor That Promotes Selection for Drug Resistance in Bacteria.
SIAM J. Appl. Math., 2017

2011
The Spectrum of Chaotic Time Series (II): Wavelet Analysis.
Int. J. Bifurc. Chaos, 2011

The Spectrum of Chaotic Time Series (I): Fourier Analysis.
Int. J. Bifurc. Chaos, 2011

2010
On a Nonlocal Reaction-Diffusion Problem Arising from the Modeling of Phytoplankton Growth.
SIAM J. Math. Anal., 2010

Single Phytoplankton Species Growth with Light and Advection in a Water Column.
SIAM J. Appl. Math., 2010

2008
Spreading Speeds and Traveling Waves for Nonmonotone Integrodifference Equations.
SIAM J. Math. Anal., 2008

Concentration Phenomena in a Nonlocal Quasi-linear Problem Modelling Phytoplankton II: Limiting Profile.
SIAM J. Math. Anal., 2008

Concentration Phenomena in a Nonlocal Quasi-linear Problem Modelling Phytoplankton I: Existence.
SIAM J. Math. Anal., 2008

Competitive Exclusion of Microbial Species for a Single Nutrient with Internal Storage.
SIAM J. Appl. Math., 2008

2005
Modeling Intervention Measures and Severity-Dependent Public Response during Severe Acute Respiratory Syndrome Outbreak.
SIAM J. Appl. Math., 2005

2002
Nonisotropic Spatiotemporal Chaotic Vibration of the Wave equation due to Mixing Energy Transport and a van der Pol Boundary Condition.
Int. J. Bifurc. Chaos, 2002

Analyzing Displacement Term's Memory Effect in a van der Pol Type Boundary Condition to Prove Chaotic Vibration of the Wave equation.
Int. J. Bifurc. Chaos, 2002

2001
Chaotic Behavior of Three Competing species of May-Leonard Model under Small periodic perturbations.
Int. J. Bifurc. Chaos, 2001

2000
Nonlinear boundary feedback control of the one-dimensional wave equation.
Proceedings of the 39th IEEE Conference on Decision and Control, 2000

1998
On the Asymmetric May-Leonard Model of Three Competing Species.
SIAM J. Appl. Math., 1998

1995
Global Stability for a Class of Predator-Prey Systems.
SIAM J. Appl. Math., 1995

1993
On a System of Reaction-Diffusion Equations Arising from Competition in an Unstirred Chemostat.
SIAM J. Appl. Math., 1993


  Loading...