Suheil A. Khuri
According to our database1,
Suheil A. Khuri
authored at least 35 papers
between 1996 and 2021.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on www2.aus.edu
On csauthors.net:
Bibliography
2021
Int. J. Comput. Math., 2021
Int. J. Comput. Math., 2021
2020
A fixed point iteration method using Green's functions for the solution of nonlinear boundary value problems over semi-Infinite intervals.
Int. J. Comput. Math., 2020
2018
Numerical solution of functional differential equations: a Green's function-based iterative approach.
Int. J. Comput. Math., 2018
Appl. Math. Lett., 2018
2017
Bratu-like equation arising in electrospinning process: a Green's function fixed-point iteration approach.
Int. J. Comput. Sci. Math., 2017
2016
Bratu's problem: A novel approach using fixed-point iterations and Green's functions.
Comput. Phys. Commun., 2016
2015
Appl. Math. Lett., 2015
A novel fixed point iteration method for the solution of third order boundary value problems.
Appl. Math. Comput., 2015
2014
Variational iteration method: Green's functions and fixed point iterations perspective.
Appl. Math. Lett., 2014
2012
Comput. Math. Appl., 2012
Appl. Math. Lett., 2012
A spline collocation approach for a generalized parabolic problem subject to non-classical conditions.
Appl. Math. Comput., 2012
2011
2010
A novel approach for the solution of a class of singular boundary value problems arising in physiology.
Math. Comput. Model., 2010
A numerical approach for solving an extended Fisher-Kolomogrov-Petrovskii-Piskunov equation.
J. Comput. Appl. Math., 2010
A spline collocation approach for a generalized wave equation subject to non-local conservation condition.
Appl. Math. Comput., 2010
A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation.
Appl. Math. Comput., 2010
2009
Appl. Math. Lett., 2009
2006
2005
On the modified Taylor's approximation for the solution of linear and nonlinear equations.
Appl. Math. Comput., 2005
2004
2003
Numerical order verification of the asymptotic expansion of a nonlinear differential equation arising in general relativity.
Appl. Math. Comput., 2003
Appl. Math. Comput., 2003
2002
Appl. Math. Comput., 2002
2000
Appl. Math. Comput., 2000
1999
Int. J. Comput. Math., 1999
Int. J. Comput. Math., 1999
1998
Appl. Math. Comput., 1998
Appl. Math. Comput., 1998
A new approach to the cubic Schrödinger equation: An application of the decomposition technique.
Appl. Math. Comput., 1998
1996
SIAM J. Appl. Math., 1996
The decomposition method for solving a second kind fredholm integral equation with a logarithmic kernel.
Int. J. Comput. Math., 1996