Stig Larsson

Orcid: 0000-0003-3291-3456

Affiliations:
  • Chalmers University of Technology, Gothenburg, Sweden


According to our database1, Stig Larsson authored at least 25 papers between 1998 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
A convergent scheme for the Bayesian filtering problem based on the Fokker-Planck equation and deep splitting.
CoRR, 2024

A priori and a posteriori error estimates for discontinuous Galerkin time-discrete methods via maximal regularity.
CoRR, 2024

2022
An energy-based deep splitting method for the nonlinear filtering problem.
CoRR, 2022

2020
Mittag-Leffler Euler Integrator for a Stochastic Fractional Order Equation with Additive Noise.
SIAM J. Numer. Anal., 2020

2019
On a Randomized Backward Euler Method for Nonlinear Evolution Equations with Time-Irregular Coefficients.
Found. Comput. Math., 2019

Error estimates of the backward Euler-Maruyama method for multi-valued stochastic differential equations.
CoRR, 2019

2018
Strong Convergence of a Fully Discrete Finite Element Approximation of the Stochastic Cahn-Hilliard Equation.
SIAM J. Numer. Anal., 2018

2017
Numerical Solution of Parabolic Problems Based on a Weak Space-Time Formulation.
Comput. Methods Appl. Math., 2017

2016
Full Discretization of Semilinear Stochastic Wave Equations Driven by Multiplicative Noise.
SIAM J. Numer. Anal., 2016

Weak convergence for a spatial approximation of the nonlinear stochastic heat equation.
Math. Comput., 2016

Geometry Assurance Integrating Process Variation With Simulation of Spring-In for Composite Parts and Assemblies.
J. Comput. Inf. Sci. Eng., 2016

2015
An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems.
SIAM J. Sci. Comput., 2015

On the Backward Euler Approximation of the Stochastic Allen-Cahn Equation.
J. Appl. Probab., 2015

2014
Erratum: Finite Element Approximation of the Cahn-Hilliard-Cook Equation.
SIAM J. Numer. Anal., 2014

2013
A Trigonometric Method for the Linear Stochastic Wave Equation.
SIAM J. Numer. Anal., 2013

Local pointwise a posteriori gradient error bounds for the Stokes equations.
Math. Comput., 2013

2011
Finite Element Approximation of the Cahn-Hilliard-Cook Equation.
SIAM J. Numer. Anal., 2011

Spatial approximation of stochastic convolutions.
J. Comput. Appl. Math., 2011

2010
Finite Element Approximation of the Linear Stochastic Wave Equation with Additive Noise.
SIAM J. Numer. Anal., 2010

Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise.
Numer. Algorithms, 2010

2005
Discretization of Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelasticity.
Proceedings of the Large-Scale Scientific Computing, 5th International Conference, 2005

Partial differential equations with numerical methods.
Texts in applied mathematics 45, Springer, ISBN: 978-3-540-01772-1, 2005

Partielle Differentialgleichungen und numerische Methoden.
Springer, ISBN: 978-3-540-20823-5, 2005

1999
A shadowing result with applications to finite element approximation of reaction-diffusion equations.
Math. Comput., 1999

1998
Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method.
Math. Comput., 1998


  Loading...