Shikha Patel

Orcid: 0009-0001-5223-2087

According to our database1, Shikha Patel authored at least 15 papers between 2019 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Structure of ${\mathbb {F}}_q{\mathcal {R}}$-linear $(\varTheta ,\varDelta _\varTheta )$-cyclic codes.
Comput. Appl. Math., April, 2024

Quantum Constacyclic BCH Codes over Qudits: A Spectral-Domain Approach.
CoRR, 2024

Construction of quantum codes from (γ, Δ)-cyclic codes.
CoRR, 2024

2023
F<sub>q</sub>R-skew cyclic codes and their application to quantum codes.
CoRR, 2023

Poster Abstract: LEVO: LEGO® Bricks Enhanced Single-Point Vibration Sensing for Occupant Monitoring.
Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems, 2023

2022
A family of constacyclic codes over a class of non-chain rings $${\mathcal {A}}_{q,r}$$ and new quantum codes.
J. Appl. Math. Comput., August, 2022

Skew cyclic codes over 픽q[u, v, w]/〈u2 - 1, v2 - 1, w2 - 1, uv - vu, vw - wv, wu - uw〉.
Discret. Math. Algorithms Appl., 2022

(θ , δ <sub>θ</sub> )-Cyclic codes over $\mathbb {F}_q[u, v]/\langle u^2-u, v^2-v, uv-vu \rangle $.
Des. Codes Cryptogr., 2022

Correction to: Cyclic codes over $M_{4} (\mathbb {F}_{2}+u\mathbb {F}_{2})$.
Cryptogr. Commun., 2022

Cyclic codes over $M_4 (\mathbb {F}_2+u\mathbb {F}_2)$.
Cryptogr. Commun., 2022

Quantum codes construction from skew polycyclic codes.
Proceedings of the IEEE International Symposium on Information Theory, 2022

2021
Reversible cyclic codes over some finite rings and their application to DNA codes.
Comput. Appl. Math., 2021

2020
Repeated-root bidimensional (<i>μ</i>, <i>ν</i>)-constacyclic codes of length 4<i>p</i><sup><i>t</i></sup>.2<sup><i>r</i></sup>.
Int. J. Inf. Coding Theory, 2020

2019
Reversible cyclic codes over F<sub>q</sub>+ u F<sub>q</sub>.
CoRR, 2019

Skew Generalized Cyclic Code over R[x<sub>1</sub>;σ<sub>1</sub>, δ<sub>1</sub>][x<sub>2</sub>;σ<sub>2</sub>, δ<sub>2</sub>].
CoRR, 2019


  Loading...