Seyed Mojtaba Marvasti-Zadeh

Orcid: 0000-0003-0536-0796

According to our database1, Seyed Mojtaba Marvasti-Zadeh authored at least 21 papers between 2016 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Adversarial Score-Based Generative Models for MMSE-Achieving AmBC Channel Estimation.
IEEE Wirel. Commun. Lett., April, 2024

Early Detection of Bark Beetle Attack Using Remote Sensing and Machine Learning: A Review.
ACM Comput. Surv., April, 2024

Training-Based Model Refinement and Representation Disagreement for Semi-Supervised Object Detection.
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024

ShadowSense: Unsupervised Domain Adaptation and Feature Fusion for Shadow-Agnostic Tree Crown Detection from RGB-Thermal Drone Imagery.
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024

2023
Orthomosaicking Thermal Drone Images of Forests via Simultaneously Acquired RGB Images.
Remote. Sens., 2023

Crown-CAM: Interpretable Visual Explanations for Tree Crown Detection in Aerial Images.
IEEE Geosci. Remote. Sens. Lett., 2023

TMR-RD: Training-based Model Refinement and Representation Disagreement for Semi-Supervised Object Detection.
CoRR, 2023

2022
Effective fusion of deep multitasking representations for robust visual tracking.
Vis. Comput., 2022

Deep Learning for Visual Tracking: A Comprehensive Survey.
IEEE Trans. Intell. Transp. Syst., 2022

Crown-CAM: Reliable Visual Explanations for Tree Crown Detection in Aerial Images.
CoRR, 2022

Classification of Bark Beetle-Induced Forest Tree Mortality using Deep Learning.
CoRR, 2022

Learning-based Monocular 3D Reconstruction of Birds: A Contemporary Survey.
CoRR, 2022

2021
Efficient scale estimation methods using lightweight deep convolutional neural networks for visual tracking.
Neural Comput. Appl., 2021

Adaptive exploitation of pre-trained deep convolutional neural networks for robust visual tracking.
Multim. Tools Appl., 2021

CHASE: Robust Visual Tracking via Cell-Level Differentiable Neural Architecture Search.
Proceedings of the 32nd British Machine Vision Conference 2021, 2021

2020
Beyond Background-Aware Correlation Filters: Adaptive Context Modeling by Hand-Crafted and Deep RGB Features for Visual Tracking.
CoRR, 2020

The Eighth Visual Object Tracking VOT2020 Challenge Results.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Proceedings of the Computer Vision - ECCV 2020 Workshops, 2020


COMET: Context-Aware IoU-Guided Network for Small Object Tracking.
Proceedings of the Computer Vision - ACCV 2020 - 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30, 2020

2016
A Novel Boundary Matching Algorithm for Video Temporal Error Concealment.
CoRR, 2016

An Efficient Adaptive Boundary Matching Algorithm for Video Error Concealment.
CoRR, 2016


  Loading...