Sergey V. Meleshko
Orcid: 0000-0002-3205-5650
According to our database1,
Sergey V. Meleshko
authored at least 26 papers
between 1990 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2023
Invariant finite-difference schemes for cylindrical one-dimensional MHD flows with conservation laws preservation.
Commun. Nonlinear Sci. Numer. Simul., November, 2023
Lie group symmetry analysis and invariant difference schemes of the two-dimensional shallow water equations in Lagrangian coordinates.
Commun. Nonlinear Sci. Numer. Simul., May, 2023
Commun. Nonlinear Sci. Numer. Simul., April, 2023
2021
Conservative invariant finite-difference schemes for the modified shallow water equations in Lagrangian coordinates.
CoRR, 2021
Commun. Nonlinear Sci. Numer. Simul., 2021
2020
Symmetry, 2020
One-dimensional flows of a polytropic gas: Lie group classification, conservation laws, invariant and conservative difference schemes.
CoRR, 2020
Group classification of the two-dimensional shallow water equations with the beta-plane approximation of coriolis parameter in Lagrangian coordinates.
Commun. Nonlinear Sci. Numer. Simul., 2020
Complete group classification of the two-Dimensional shallow water equations with constant coriolis parameter in Lagrangian coordinates.
Commun. Nonlinear Sci. Numer. Simul., 2020
2019
Comment on 'Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models'.
Comput. Phys. Commun., 2019
Commun. Nonlinear Sci. Numer. Simul., 2019
One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes.
Commun. Nonlinear Sci. Numer. Simul., 2019
2018
Exact solutions of the population balance equation including particle transport, using group analysis.
Commun. Nonlinear Sci. Numer. Simul., 2018
2017
Complete group classification of systems of two nonlinear second-Order ordinary differential equations of the form y′′=F(y).
Commun. Nonlinear Sci. Numer. Simul., 2017
Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation.
Commun. Nonlinear Sci. Numer. Simul., 2017
Linearization criteria for systems of two second-order stochastic ordinary differential equations.
Appl. Math. Comput., 2017
Symmetries of population balance equations for aggregation, breakage and growth processes.
Appl. Math. Comput., 2017
2016
Commun. Nonlinear Sci. Numer. Simul., 2016
2015
Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term.
Commun. Nonlinear Sci. Numer. Simul., 2015
On group classification of normal systems of linear second-order ordinary differential equations.
Commun. Nonlinear Sci. Numer. Simul., 2015
2014
Commun. Nonlinear Sci. Numer. Simul., 2014
2013
Complete group classification of systems of two linear second-order ordinary differential equations.
Commun. Nonlinear Sci. Numer. Simul., 2013
2005
A new approach related with group analysis and hodograph type transformation for constructing exact solutions.
Math. Comput. Simul., 2005
1990
Proceedings of the International Symposium on Symbolic and Algebraic Computation, 1990