Semyon Tsynkov
Orcid: 0000-0003-1069-9612Affiliations:
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
According to our database1,
Semyon Tsynkov
authored at least 50 papers
between 1997 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
On csauthors.net:
Bibliography
2024
J. Sci. Comput., August, 2024
Computation of unsteady electromagnetic scattering about 3D complex bodies in free space with high-order difference potentials.
J. Comput. Phys., February, 2024
Modeling the Earth's Ionosphere by a Phase Screen for the Analysis of Transionospheric SAR Imaging.
IEEE Trans. Geosci. Remote. Sens., 2024
Performance Limitations for the Phase Screen in the Settings of Transionospheric SAR.
Proceedings of the IGARSS 2024, 2024
Proceedings of the IGARSS 2024, 2024
2023
SIAM J. Imaging Sci., December, 2023
CoRR, 2023
2022
3D time-dependent scattering about complex shapes using high order difference potentials.
J. Comput. Phys., 2022
A high order compact time/space finite difference scheme for the 2D and 3D wave equation with a damping layer.
J. Comput. Phys., 2022
CoRR, 2022
2021
Non-iterative domain decomposition for the Helmholtz equation using the method of difference potentials.
CoRR, 2021
2020
Numerical Solution of 3D Exterior Unsteady Wave Propagation Problems Using Boundary Operators.
SIAM J. Sci. Comput., 2020
2019
J. Sci. Comput., 2019
J. Sci. Comput., 2019
J. Comput. Phys., 2019
2018
A High Order Compact Time/Space Finite Difference Scheme for the Wave Equation with Variable Speed of Sound.
J. Sci. Comput., 2018
J. Comput. Phys., 2018
Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials.
J. Comput. Phys., 2018
2017
J. Comput. Phys., 2017
2015
SIAM J. Imaging Sci., 2015
2013
A High-Order Numerical Method for the Helmholtz Equation with Nonstandard Boundary Conditions.
SIAM J. Sci. Comput., 2013
Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number.
J. Comput. Phys., 2013
High order numerical simulation of the transmission and scattering of waves using the method of difference potentials.
J. Comput. Phys., 2013
Discrete Calderon's projections on parallelepipeds and their application to computing exterior magnetic fields for FRC plasmas.
J. Comput. Phys., 2013
2012
Erratum to: The Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes.
J. Sci. Comput., 2012
The Method of Difference Potentials for the Helmholtz Equation Using Compact High Order Schemes.
J. Sci. Comput., 2012
A non-deteriorating algorithm for computational electromagnetism based on quasi-lacunae of Maxwell's equations.
J. Comput. Phys., 2012
2011
2010
J. Sci. Comput., 2010
2009
SIAM J. Imaging Sci., 2009
J. Sci. Comput., 2009
A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media.
J. Comput. Phys., 2009
Appl. Math. Lett., 2009
2008
2007
High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension.
J. Comput. Phys., 2007
Appl. Math. Lett., 2007
2004
Math. Comput. Simul., 2004
2003
SIAM J. Appl. Math., 2003
SIAM J. Appl. Math., 2003
J. Sci. Comput., 2003
Proceedings of the Computational Science and Its Applications, 2003
2002
J. Sci. Comput., 2002
2001
1999
External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics.
SIAM J. Sci. Comput., 1999
1997
SIAM J. Sci. Comput., 1997