Samuel Naffziger

Affiliations:
  • AMD, Fort Collins, CO, USA


According to our database1, Samuel Naffziger authored at least 38 papers between 2001 and 2024.

Collaborative distances:

Awards

IEEE Fellow

IEEE Fellow 2014, "For leadership in the development of power management and low power processor technologies".

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
AMD Instinct™ MI300X Accelerator: Packaging and Architecture Co-Optimization.
Proceedings of the IEEE Symposium on VLSI Technology and Circuits 2024, 2024

Realizing the AMD Exascale Heterogeneous Processor Vision : Industry Product.
Proceedings of the 51st ACM/IEEE Annual International Symposium on Computer Architecture, 2024

2023
Innovation For the Next Decade of Compute Efficiency.
Proceedings of the IEEE International Solid- State Circuits Conference, 2023

2022
3D V-Cache: the Implementation of a Hybrid-Bonded 64MB Stacked Cache for a 7nm x86-64 CPU.
Proceedings of the IEEE International Solid-State Circuits Conference, 2022

2021
A New Era of Tailored Computing.
Proceedings of the 2021 Symposium on VLSI Circuits, Kyoto, Japan, June 13-19, 2021, 2021

SE1: What Technologies Will Shape the Future of Computing?
Proceedings of the IEEE International Solid-State Circuits Conference, 2021

Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product.
Proceedings of the 48th ACM/IEEE Annual International Symposium on Computer Architecture, 2021

Understanding Chiplets Today to Anticipate Future Integration Opportunities and Limits.
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, 2021

2020
2.2 AMD Chiplet Architecture for High-Performance Server and Desktop Products.
Proceedings of the 2020 IEEE International Solid- State Circuits Conference, 2020

8.4 Radeon RX 5700 Series: The AMD 7nm Energy-Efficient High-Performance GPUs.
Proceedings of the 2020 IEEE International Solid- State Circuits Conference, 2020

2019
"Zeppelin": An SoC for Multichip Architectures.
IEEE J. Solid State Circuits, 2019

2018
Zen: An Energy-Efficient High-Performance × 86 Core.
IEEE J. Solid State Circuits, 2018

'Zeppelin': An SoC for multichip architectures.
Proceedings of the 2018 IEEE International Solid-State Circuits Conference, 2018

2017
Bristol Ridge: A 28-nm × 86 Performance-Enhanced Microprocessor Through System Power Management.
IEEE J. Solid State Circuits, 2017

2016
Energy-Efficient Graphics and Multimedia in 28-nm Carrizo Accelerated Processing Unit.
IEEE Micro, 2016

Carrizo: A High Performance, Energy Efficient 28 nm APU.
IEEE J. Solid State Circuits, 2016

Adaptive Voltage Frequency Scaling Using Critical Path Accumulator Implemented in 28nm CPU.
Proceedings of the 29th International Conference on VLSI Design and 15th International Conference on Embedded Systems, 2016

4.2 Increasing the performance of a 28nm x86-64 microprocessor through system power management.
Proceedings of the 2016 IEEE International Solid-State Circuits Conference, 2016

Unified Power Frequency Model Framework.
Proceedings of the 2016 International Symposium on Low Power Electronics and Design, 2016

2015
Hot Chips 26 [Guest editors' introduction].
IEEE Micro, 2015

Steamroller Module and Adaptive Clocking System in 28 nm CMOS.
IEEE J. Solid State Circuits, 2015

4.8 A 28nm x86 APU optimized for power and area efficiency.
Proceedings of the 2015 IEEE International Solid-State Circuits Conference, 2015

2014
5.6 Adaptive clocking system for improved power efficiency in a 28nm x86-64 microprocessor.
Proceedings of the 2014 IEEE International Conference on Solid-State Circuits Conference, 2014

Welcome program chairs.
Proceedings of the 2014 IEEE Hot Chips 26 Symposium (HCS), 2014

AMD SOC power management: Improving performance/watt using run-time feedback.
Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, 2014

2013
Resonant-Clock Design for a Power-Efficient, High-Volume x86-64 Microprocessor.
IEEE J. Solid State Circuits, 2013

2012
Design of the Two-Core x86-64 AMD "Bulldozer" Module in 32 nm SOI CMOS.
IEEE J. Solid State Circuits, 2012

Design and implementation of soft-edge flip-flops for x86-64 AMD microprocessor modules.
Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012

2011
An x86-64 Core in 32 nm SOI CMOS.
IEEE J. Solid State Circuits, 2011

Design solutions for the Bulldozer 32nm SOI 2-core processor module in an 8-core CPU.
Proceedings of the IEEE International Solid-State Circuits Conference, 2011

2010
A 32nm fully integrated reconfigurable switched-capacitor DC-DC converter delivering 0.55W/mm<sup>2</sup> at 81% efficiency.
Proceedings of the IEEE International Solid-State Circuits Conference, 2010

An x86-64 core implemented in 32nm SOI CMOS.
Proceedings of the IEEE International Solid-State Circuits Conference, 2010

2006
The implementation of a 2-core, multi-threaded itanium family processor.
IEEE J. Solid State Circuits, 2006

Power and temperature control on a 90-nm Itanium family processor.
IEEE J. Solid State Circuits, 2006

A 90-nm variable frequency clock system for a power-managed itanium architecture processor.
IEEE J. Solid State Circuits, 2006

2003
Correction to "statistical clock skew modeling with data delay variations".
IEEE Trans. Very Large Scale Integr. Syst., 2003

2002
The implementation of the Itanium 2 microprocessor.
IEEE J. Solid State Circuits, 2002

2001
Statistical clock skew modeling with data delay variations.
IEEE Trans. Very Large Scale Integr. Syst., 2001


  Loading...