Salvatore Milici

Orcid: 0000-0002-2184-8567

Affiliations:
  • University of Catania, Italy


According to our database1, Salvatore Milici authored at least 38 papers between 1988 and 2022.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

1990
1995
2000
2005
2010
2015
2020
0
1
2
3
4
5
1
1
1
1
2
1
4
3
4
1
1
1
1
1
1
1
2
1
2
1
2
2
1
2

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2022
On uniformly resolvable $(C_4,K_{1,3})$-designs.
Contributions Discret. Math., 2022

2021
Complex uniformly resolvable decompositions of K_v.
Ars Math. Contemp., 2021

2020
Uniformly resolvable decompositions of K<sub>v</sub> in 1-factors and 4-stars.
Australas. J Comb., 2020

2018
Uniformly resolvable $(C_4, K_{1, 3})$-designs of order v and.
Contributions Discret. Math., 2018

2017
α-Resolvable λ-fold G-designs.
Contributions Discret. Math., 2017

Decomposition of λK<sub>v</sub> into kites and 4-cycles.
Ars Comb., 2017

2016
The spectrum of α-resolvable λ-fold (K_4 - e)-designs.
Ars Math. Contemp., 2016

2015
Maximum uniformly resolvable decompositions of <sub>K</sub><sub>v</sub> and <sub>K</sub><sub>v</sub>-I into 3-stars and 3-cycles.
Discret. Math., 2015

Resolvable 3-star designs.
Discret. Math., 2015

Uniformly resolvable decompositions of <sub>K</sub><sub>v</sub> into paths on two, three and four vertices.
Discret. Math., 2015

On uniformly resolvable {K<sub>2</sub>, P<sub>k</sub>}-designs with with k=3, 4.
Contributions Discret. Math., 2015

2014
Uniformly resolvable decompositions of K<sub>v</sub> into P<sub>3</sub> and K<sub>3</sub> graphs.
Discret. Math., 2014

G-designs without blocking sets, Note.
Ars Comb., 2014

Uniformly resolvable ℋ-designs with ℋ={P<sub>3</sub>, <sub>4</sub>}.
Australas. J Comb., 2014

2013
Octagon kite systems.
Electron. Notes Discret. Math., 2013

On the existence of uniformly resolvable decompositions of <i>K</i><sub><i>v</i></sub> and <i>K</i><sub><i>v</i></sub>-<i>I</i>-I into paths and kites.
Discret. Math., 2013

Minimum embedding of a K<sub>3</sub>-design into a balanced incomplete block design of index λ ≥ 2.
Ars Comb., 2013

A note on uniformly resolvable decompositions of K<sub>v</sub> and K<sub>v</sub>-I into 2-stars and 4-cycles.
Australas. J Comb., 2013

2012
Small embedding of an S<sub>3</sub>(2, 4, u) into an S<sub>λ</sub>(2, 4, u+w).
Discret. Math., 2012

2010
Maximum embedding of an H(v-w, 3, 1) into a TS(v, λ).
Australas. J Comb., 2010

2009
Minimum embedding of a P<sub>4</sub>-design into a balanced incomplete block design of index lambda.
Discret. Math., 2009

2008
Minimum embedding of P<sub>3</sub>-designs into TS(v, lambda).
Discret. Math., 2008

2004
Coverings of a complete graph with five-vertex and five-edge graphs.
Discret. Math., 2004

2002
On nesting of <i>G</i>-decompositions of lambda<i>K</i><sub>v</sub> where <i>G</i> has four nonisolated vertices or les.
Discret. Math., 2002

2001
Colouring Steiner systems with specified block colour patterns.
Discret. Math., 2001

1999
Disjoint blocking sets in cycle systems.
Discret. Math., 1999

Embedding handcuffed designs with block size 2 or 3 in 4-cycle systems.
Discret. Math., 1999

1997
The fine structure of threefold directed triple systems.
Australas. J Comb., 1997

1996
Support Sizes of Directed Triple Systems.
J. Comb. Theory A, 1996

A result concerning two conjectures of Berge and Chvátal.
Discret. Math., 1996

1995
Embeddings of simple maximum packings of triples with lambda even.
Discret. Math., 1995

1994
The spectrum of lambda-times repeated blocks for TS(upsilon, lambda).
Discret. Math., 1994

Blocking Sets in SQS(2u).
Comb. Probab. Comput., 1994

1993
Repeated blocks in maximum packing of triples with index 2.
Discret. Math., 1993

Blocking sets in handcuffed designs.
Australas. J Comb., 1993

1991
Indecomposable <i>S</i><sub>6</sub>(2, 3, <i>v</i>)'s.
J. Comb. Theory A, 1991

1988
The spectrum for three-times repeated blocks in a <i>S</i><sub>3</sub>(2, 3, <i>v</i>).
J. Comb. Theory A, 1988

On the parameter v<sub>2</sub>(h)<=6h for L<sub>2</sub>-coloured graphs.
Discret. Math., 1988


  Loading...