Salvatore Milici
Orcid: 0000-0002-2184-8567Affiliations:
- University of Catania, Italy
According to our database1,
Salvatore Milici
authored at least 38 papers
between 1988 and 2022.
Collaborative distances:
Collaborative distances:
Timeline
1990
1995
2000
2005
2010
2015
2020
0
1
2
3
4
5
1
1
1
1
2
1
4
3
4
1
1
1
1
1
1
1
2
1
2
1
2
2
1
2
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on scopus.com
-
on orcid.org
On csauthors.net:
Bibliography
2022
2021
2020
Australas. J Comb., 2020
2018
Contributions Discret. Math., 2018
2017
Decomposition of λK<sub>v</sub> into kites and 4-cycles.
Ars Comb., 2017
2016
2015
Maximum uniformly resolvable decompositions of <sub>K</sub><sub>v</sub> and <sub>K</sub><sub>v</sub>-I into 3-stars and 3-cycles.
Discret. Math., 2015
Uniformly resolvable decompositions of <sub>K</sub><sub>v</sub> into paths on two, three and four vertices.
Discret. Math., 2015
Contributions Discret. Math., 2015
2014
Uniformly resolvable decompositions of K<sub>v</sub> into P<sub>3</sub> and K<sub>3</sub> graphs.
Discret. Math., 2014
G-designs without blocking sets, Note.
Ars Comb., 2014
Australas. J Comb., 2014
2013
On the existence of uniformly resolvable decompositions of <i>K</i><sub><i>v</i></sub> and <i>K</i><sub><i>v</i></sub>-<i>I</i>-I into paths and kites.
Discret. Math., 2013
Minimum embedding of a K<sub>3</sub>-design into a balanced incomplete block design of index λ ≥ 2.
Ars Comb., 2013
A note on uniformly resolvable decompositions of K<sub>v</sub> and K<sub>v</sub>-I into 2-stars and 4-cycles.
Australas. J Comb., 2013
2012
Discret. Math., 2012
2010
2009
Minimum embedding of a P<sub>4</sub>-design into a balanced incomplete block design of index lambda.
Discret. Math., 2009
2008
2004
Discret. Math., 2004
2002
On nesting of <i>G</i>-decompositions of lambda<i>K</i><sub>v</sub> where <i>G</i> has four nonisolated vertices or les.
Discret. Math., 2002
2001
1999
Discret. Math., 1999
1997
1996
1995
Discret. Math., 1995
1994
Discret. Math., 1994
1993
1991
1988
The spectrum for three-times repeated blocks in a <i>S</i><sub>3</sub>(2, 3, <i>v</i>).
J. Comb. Theory A, 1988
Discret. Math., 1988