Rui Zhao

Orcid: 0000-0002-9577-7714

Affiliations:
  • Wuhan University, State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, China


According to our database1, Rui Zhao authored at least 13 papers between 2014 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
A Multi-Scale Mask Convolution-Based Blind-Spot Network for Hyperspectral Anomaly Detection.
Remote. Sens., August, 2024

A Novel Fully Convolutional Auto-Encoder Based on Dual Clustering and Latent Feature Adversarial Consistency for Hyperspectral Anomaly Detection.
Remote. Sens., February, 2024

2023
Multistage Progressive Interactive Fusion Network for Sentinel-2: High Resolution for All Bands.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2023

2022
An Encoder-Decoder with a Residual Network for Fusing Hyperspectral and Panchromatic Remote Sensing Images.
Remote. Sens., 2022

Spectral-Spatial Residual Network for Fusing Hyperspectral and Panchromatic Remote Sensing Images.
Remote. Sens., 2022

2017
Hyperspectral Anomaly Detection via a Sparsity Score Estimation Framework.
IEEE Trans. Geosci. Remote. Sens., 2017

IBRS: An Iterative Background Reconstruction and Suppression Framework for Hyperspectral Target Detection.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2017

GSEAD: Graphical Scoring Estimation for Hyperspectral Anomaly Detection.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2017

2016
Beyond Background Feature Extraction: An Anomaly Detection Algorithm Inspired by Slowly Varying Signal Analysis.
IEEE Trans. Geosci. Remote. Sens., 2016

A spectral-spatial based local summation anomaly detection method for hyperspectral images.
Signal Process., 2016

GSEAD: Graphical score estimation for hyperspectral anomaly detection.
Proceedings of the 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2016

BRAD: Background regression based hyperspectral anomaly detection, a k-nn score estimation aspect.
Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, 2016

2014
A Robust Nonlinear Hyperspectral Anomaly Detection Approach.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2014


  Loading...