Rüdiger Verfürth

Orcid: 0000-0002-7355-427X

According to our database1, Rüdiger Verfürth authored at least 16 papers between 1998 and 2021.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2021
Robust a posteriori error estimators with error-dominated oscillation for the reaction-diffusion equation.
CoRR, 2021

Quasi-monotonicity and Robust Localization with Continuous Piecewise Polynomials.
CoRR, 2021

Quasi-Optimal and Pressure Robust Discretizations of the Stokes Equations by Moment- and Divergence-Preserving Operators.
Comput. Methods Appl. Math., 2021

2019
A Quasi-optimal Crouzeix-Raviart Discretization of the Stokes Equations.
SIAM J. Numer. Anal., 2019

2009
A Note on Constant-Free A Posteriori Error Estimates.
SIAM J. Numer. Anal., 2009

Explicit Upper Bounds for Dual Norms of Residuals.
SIAM J. Numer. Anal., 2009

2005
Robust A Posteriori Error Estimates for Nonstationary Convection-Diffusion Equations.
SIAM J. Numer. Anal., 2005

Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations.
SIAM J. Numer. Anal., 2005

2004
A posteriori error estimators for mixed finite element methods in linear elasticity.
Numerische Mathematik, 2004

On the stability of <i>BDMS</i> and <i>PEERS</i> elements.
Numerische Mathematik, 2004

2003
Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire.
Numerische Mathematik, 2003

A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem.
Numer. Algorithms, 2003

2000
Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes.
Numerische Mathematik, 2000

Adaptive finite element methods for elliptic equations with non-smooth coefficients.
Numerische Mathematik, 2000

1998
A posteriori error estimators for convection-diffusion equations.
Numerische Mathematik, 1998

A posteriori error estimates for nonlinear problems. L<sup>r</sup>(0, T; L<sup>rho</sup>(Omega))-error estimates for finite element discretizations of parabolic equations.
Math. Comput., 1998


  Loading...