Robert Klopfleisch

Orcid: 0000-0002-6308-0568

According to our database1, Robert Klopfleisch authored at least 49 papers between 2017 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Domain generalization across tumor types, laboratories, and species - Insights from the 2022 edition of the Mitosis Domain Generalization Challenge.
Medical Image Anal., 2024

On the Value of PHH3 for Mitotic Figure Detection on H&E-stained Images.
CoRR, 2024

Deep Learning model predicts the c-Kit-11 mutational status of canine cutaneous mast cell tumors by HE stained histological slides.
CoRR, 2024

Assessment of Scanner Domain Shifts in Deep Multiple Instance Learning.
Proceedings of the Bildverarbeitung für die Medizin 2024, 2024

Abstract: Cytologic Scoring of Equine Exercise-induced Pulmonary Hemorrhage - Performance of Human Experts and a Deep Learning.
Proceedings of the Bildverarbeitung für die Medizin 2024, 2024

Abstract: Comprehensive Multi-domain Dataset for Mitotic Figure Detection.
Proceedings of the Bildverarbeitung für die Medizin 2024, 2024

Automated Mitotic Index Calculation via Deep Learning and Immunohistochemistry.
Proceedings of the Bildverarbeitung für die Medizin 2024, 2024

2023

Multi-Scanner Canine Cutaneous Squamous Cell Carcinoma Histopathology Dataset.
Dataset, January, 2023

Mitosis domain generalization in histopathology images - The MIDOG challenge.
Medical Image Anal., 2023

Nuclear Morphometry using a Deep Learning-based Algorithm has Prognostic Relevance for Canine Cutaneous Mast Cell Tumors.
CoRR, 2023

Mind the Gap: Scanner-Induced Domain Shifts Pose Challenges for Representation Learning in Histopathology.
Proceedings of the 20th IEEE International Symposium on Biomedical Imaging, 2023

Abstract: Pan-tumor CAnine CuTaneous Cancer Histology (CATCH) Dataset.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023

Multi-scanner Canine Cutaneous Squamous Cell Carcinoma Histopathology Dataset.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023

Limits of Human Expert Ensembles in Mitosis Multi-expert Ground Truth Generation.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023

Deep Learning-based Automatic Assessment of AgNOR-scores in Histopathology Images.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023

Abstract: the MIDOG Challenge 2021 - Mitosis Domain Generalization in Histopathology Images.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023

2022
Mitosis domain generalization in histopathology images - The MIDOG challenge.
CoRR, 2022

Pan-Tumor CAnine cuTaneous Cancer Histology (CATCH) Dataset.
CoRR, 2022

First Steps on Gamification of Lung Fluid Cells Annotations in the Flower Domain.
Proceedings of the Bildverarbeitung für die Medizin 2022, 2022

2021
Inter-Species Cell Detection: Datasets on pulmonary hemosiderophages in equine, human and feline specimens.
CoRR, 2021

Quantifying the Scanner-Induced Domain Gap in Mitosis Detection.
CoRR, 2021

Learning to be EXACT, Cell Detection for Asthma on Partially Annotated Whole Slide Images.
CoRR, 2021

Iterative Cross-Scanner Registration for Whole Slide Images.
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2021

Robust Quad-Tree based Registration on Whole Slide Images.
Proceedings of the MICCAI Workshop on Computational Pathology, 2021


Cell Detection for Asthma on Partially Annotated Whole Slide Images - Learning to be EXACT.
Proceedings of the Bildverarbeitung für die Medizin 2021, 2021

Abstract: Are Fast Labeling Methods Reliable? - A Case Study of Computer-aided Expert Annotations on Microscopy Slides.
Proceedings of the Bildverarbeitung für die Medizin 2021, 2021

Abstract: Deep Learning-based Quantification of Pulmonary Hemosiderophages in Cytology Slides.
Proceedings of the Bildverarbeitung für die Medizin 2021, 2021

Dataset on Bi- and Multi-nucleated Tumor Cells in Canine Cutaneous Mast Cell Tumors.
Proceedings of the Bildverarbeitung für die Medizin 2021, 2021

Abstract: Deep Learning Algorithms Out-perform Veterinary Pathologists in Detecting the Mitotically Most Active Tumor Region.
Proceedings of the Bildverarbeitung für die Medizin 2021, 2021

Abstract: A Completely Annotated Whole Slide Image Dataset of Canine Breast Cancer to Aid Human Breast Cancer Research.
Proceedings of the Bildverarbeitung für die Medizin 2021, 2021

2020
How Many Annotators Do We Need? - A Study on the Influence of Inter-Observer Variability on the Reliability of Automatic Mitotic Figure Assessment.
CoRR, 2020

Dogs as Model for Human Breast Cancer: A Completely Annotated Whole Slide Image Dataset.
CoRR, 2020

EXACT: A collaboration toolset for algorithm-aided annotation of almost everything.
CoRR, 2020

Are Fast Labeling Methods Reliable? A Case Study of Computer-Aided Expert Annotations on Microscopy Slides.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, 2020

Are Pathologist-Defined Labels Reproducible? Comparison of the TUPAC16 Mitotic Figure Dataset with an Alternative Set of Labels.
Proceedings of the Interpretable and Annotation-Efficient Learning for Medical Image Computing, 2020

Is Crowd-Algorithm Collaboration an Advanced Alternative to Crowd-Sourcing on Cytology Slides?
Proceedings of the Bildverarbeitung für die Medizin 2020 - Algorithmen - Systeme, 2020

Abstract: How Big is Big Enough?
Proceedings of the Bildverarbeitung für die Medizin 2020 - Algorithmen - Systeme, 2020

Inter-Species, Inter-Tissue Domain Adaptation for Mitotic Figure Assessment.
Proceedings of the Bildverarbeitung für die Medizin 2020 - Algorithmen - Systeme, 2020

2019
Fooling the Crowd with Deep Learning-based Methods.
CoRR, 2019

Learning New Tricks from Old Dogs - Inter-Species, Inter-Tissue Domain Adaptation for Mitotic Figure Assessment.
CoRR, 2019

Deep Learning-Based Quantification of Pulmonary Hemosiderophages in Cytology Slides.
CoRR, 2019

Field of Interest Prediction for Computer-Aided Mitotic Count.
CoRR, 2019

Field of Interest Proposal for Augmented Mitotic Cell Count: Comparison of Two Convolutional Networks.
Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), 2019

Augmented Mitotic Cell Count Using Field of Interest Proposal.
Proceedings of the Bildverarbeitung für die Medizin 2019 - Algorithmen - Systeme, 2019

2018
Classification of Mitotic Cells - Potentials Beyond the Limits of Small Data Sets.
Proceedings of the Bildverarbeitung für die Medizin 2018 - Algorithmen - Systeme, 2018

SlideRunner - A Tool for Massive Cell Annotations in Whole Slide Images.
Proceedings of the Bildverarbeitung für die Medizin 2018 - Algorithmen - Systeme, 2018

2017
A Guided Spatial Transformer Network for Histology Cell Differentiation.
Proceedings of the VCBM 17: Eurographics Workshop on Visual Computing for Biology and Medicine, 2017


  Loading...