Riyad Ismail

Orcid: 0000-0001-5020-4579

According to our database1, Riyad Ismail authored at least 18 papers between 2009 and 2019.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2019
Using Sentinel-2 Multispectral Images to Map the Occurrence of the Cossid Moth (<i>Coryphodema tristis</i>) in <i>Eucalyptus Nitens</i> Plantations of Mpumalanga, South Africa.
Remote. Sens., 2019

Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery.
Int. J. Appl. Earth Obs. Geoinformation, 2019

2017
Estimating Swiss chard foliar macro- and micronutrient concentrations under different irrigation water sources using ground-based hyperspectral data and four partial least squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms.
Comput. Electron. Agric., 2017

2016
Investigating the Utility of Oblique Tree-Based Ensembles for the Classification of Hyperspectral Data.
Sensors, 2016

Unsupervised anomaly weed detection in riparian forest areas using hyperspectral data and LiDAR.
Proceedings of the 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2016

2015
Random Forests Unsupervised Classification: The Detection and Mapping of Solanum mauritianum Infestations in Plantation Forestry Using Hyperspectral Data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2015

2014
Using Boruta-Selected Spectroscopic Wavebands for the Asymptomatic Detection of Fusarium Circinatum Stress.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2014

Investigating the Capability of Few Strategically Placed Worldview-2 Multispectral Bands to Discriminate Forest Species in KwaZulu-Natal, South Africa.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2014

Mapping Bugweed (Solanum mauritianum) Infestations in Pinus patula Plantations Using Hyperspectral Imagery and Support Vector Machines.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2014

Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms.
Sensors, 2014

2013
Determining the susceptibility of <i>Eucalyptus nitens</i> forests to <i>Coryphodema tristis</i> (cossid moth) occurrence in Mpumalanga, South Africa.
Int. J. Geogr. Inf. Sci., 2013

Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor.
Int. J. Appl. Earth Obs. Geoinformation, 2013

Spectral resampling based on user-defined inter-band correlation filter: C<sub>3</sub> and C<sub>4</sub> grass species classification.
Int. J. Appl. Earth Obs. Geoinformation, 2013

Reducing hyperspectral data dimensionality using random forest based wrappers.
Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, 2013

2012
Discriminating the occurrence of pitch canker infection in Pinus radiata forests using high spatial resolution QuickBird data and artificial neural networks.
Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012

2010
Modeling the Potential Distribution of Pine Forests Susceptible to <i>Sirex Noctilio</i> Infestations in Mpumalanga, South Africa.
Trans. GIS, 2010

A comparison of regression tree ensembles: Predicting Sirex noctilio induced water stress in Pinus patula forests of KwaZulu-Natal, South Africa.
Int. J. Appl. Earth Obs. Geoinformation, 2010

2009
Field Spectrometry of Papyrus Vegetation (Cyperus papyrus L.) in Swamp Wetlands of St Lucia, South Africa.
Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, 2009


  Loading...