Régis Monneau

According to our database1, Régis Monneau authored at least 16 papers between 2000 and 2015.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2015
A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic.
Numerische Mathematik, 2015

A fast-marching like algorithm for geometrical shock dynamics.
J. Comput. Phys., 2015

2014
Gradient Entropy Estimate and Convergence of a Semi-Explicit Scheme for Diagonal Hyperbolic Systems.
SIAM J. Numer. Anal., 2014

Existence and Nonexistence of Semidiscrete Shocks for a Car-Following Model in Traffic Flow.
SIAM J. Math. Anal., 2014

Derivation of Seawater Intrusion Models by Formal Asymptotics.
SIAM J. Appl. Math., 2014

2012
A posteriori error estimates for the effective Hamiltonian of dislocation dynamics.
Numerische Mathematik, 2012

2011
A Generalized Fast Marching Method for Dislocation Dynamics.
SIAM J. Numer. Anal., 2011

2010
On the Rate of Convergence in Periodic Homogenization of Scalar First-Order Ordinary Differential Equations.
SIAM J. Math. Anal., 2010

Well-posedness and numerical analysis of a one-dimensional non-local transport equation modelling dislocations dynamics.
Math. Comput., 2010

2009
Existence of Solutions for a Model Describing the Dynamics of Junctions Between Dislocations.
SIAM J. Math. Anal., 2009

2008
Convergence of a Generalized Fast-Marching Method for an Eikonal Equation with a Velocity-Changing Sign.
SIAM J. Numer. Anal., 2008

Global Existence Results and Uniqueness for Dislocation Equations.
SIAM J. Math. Anal., 2008

A numerical study for the homogenisation of one-dimensional models describing the motion of dislocations.
Int. J. Comput. Sci. Math., 2008

2006
A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics.
Numerische Mathematik, 2006

A new 3d-2d interior error estimate independent on the geometry of a linear elastic plate.
Asymptot. Anal., 2006

2000
Convergence of Meissner Minimizers of the Ginzburg-Landau Energy of Superconductivity as κ->+∞.
SIAM J. Math. Anal., 2000


  Loading...