Rafael Ballester-Ripoll

Orcid: 0000-0001-5831-2056

According to our database1, Rafael Ballester-Ripoll authored at least 29 papers between 2011 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
High-dimensional scalar function visualization using principal parameterizations.
Vis. Comput., April, 2024

Computing Statistical Moments Via Tensorization of Polynomial Chaos Expansions.
SIAM/ASA J. Uncertain. Quantification, 2024

Global Sensitivity Analysis of Uncertain Parameters in Bayesian Networks.
CoRR, 2024

2023
The YODO algorithm: An efficient computational framework for sensitivity analysis in Bayesian networks.
Int. J. Approx. Reason., August, 2023

2022
Computing Sobol indices in probabilistic graphical models.
Reliab. Eng. Syst. Saf., 2022

tntorch: Tensor Network Learning with PyTorch.
J. Mach. Learn. Res., 2022

Tensor approximation of cooperative games and their semivalues.
Int. J. Approx. Reason., 2022

Are Quantum Computers Practical Yet? A Case for Feature Selection in Recommender Systems using Tensor Networks.
CoRR, 2022

You Only Derive Once (YODO): Automatic Differentiation for Efficient Sensitivity Analysis in Bayesian Networks.
Proceedings of the International Conference on Probabilistic Graphical Models, 2022

T4DT: Tensorizing Time for Learning Temporal 3D Visual Data.
Proceedings of the 33rd British Machine Vision Conference 2022, 2022

2021
Global sensitivity analysis in probabilistic graphical models.
CoRR, 2021

SenVis: Interactive Tensor-based Sensitivity Visualization.
Comput. Graph. Forum, 2021

Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via Differentiable Cross-Approximation.
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021

2020
TTHRESH: Tensor Compression for Multidimensional Visual Data.
IEEE Trans. Vis. Comput. Graph., 2020

2019
Tensor Decompositions for Integral Histogram Compression and Look-Up.
IEEE Trans. Vis. Comput. Graph., 2019

Sobol tensor trains for global sensitivity analysis.
Reliab. Eng. Syst. Saf., 2019

VIAN: A Visual Annotation Tool for Film Analysis.
Comput. Graph. Forum, 2019

Tensor Methods for Global Sensitivity Analysis.
Proceedings of the 49. Jahrestagung der Gesellschaft für Informatik, 50 Jahre Gesellschaft für Informatik, 2019

2018
SGEMM GPU kernel performance.
Dataset, February, 2018

Multiresolution Volume Filtering in the Tensor Compressed Domain.
IEEE Trans. Vis. Comput. Graph., 2018

Tensor Algorithms for Advanced Sensitivity Metrics.
SIAM/ASA J. Uncertain. Quantification, 2018

Visualization of High-dimensional Scalar Functions Using Principal Parameterizations.
CoRR, 2018

2017
Tensor Approximation of Advanced Metrics for Sensitivity Analysis.
CoRR, 2017

2016
Lossy volume compression using Tucker truncation and thresholding.
Vis. Comput., 2016

A surrogate visualization model using the tensor train format.
Proceedings of the SIGGRAPH ASIA 2016, Macao, December 5-8, 2016, 2016

Compressing Bidirectional Texture Functions via Tensor Train Decomposition.
Proceedings of the 24th Pacific Conference on Computer Graphics and Applications, 2016

2015
Analysis of tensor approximation for compression-domain volume visualization.
Comput. Graph., 2015

2013
Period Selection for Minimal Hyperperiod in Periodic Task Systems.
IEEE Trans. Computers, 2013

2011
Task period selection to minimize hyperperiod.
Proceedings of the IEEE 16th Conference on Emerging Technologies & Factory Automation, 2011


  Loading...