Przemyslaw Koprowski

Orcid: 0000-0003-0952-5738

According to our database1, Przemyslaw Koprowski authored at least 17 papers between 2008 and 2023.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
The anisotropic part of a quadratic form over a number field.
J. Symb. Comput., 2023

Pourchet's theorem in action: decomposing univariate nonnegative polynomials as sums of five squares.
Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation, 2023

Factorization and root-finding for polynomials over division quaternion algebras.
Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation, 2023

2022
Computing Square Roots in Quaternion Algebras.
Fundam. Informaticae, 2022

A note on the paper "A new approach for finding the determinant of matrices" by O. Rezaifar and H. Rezaee.
Appl. Math. Comput., 2022

Solving Sums of Squares in Global Fields.
Proceedings of the ISSAC '22: International Symposium on Symbolic and Algebraic Computation, Villeneuve-d'Ascq, France, July 4, 2022

2021
Computing Singular Elements Modulo Squares.
Fundam. Informaticae, 2021

Even points on an algebraic curve.
Finite Fields Their Appl., 2021

Isotropic vectors over global fields.
CoRR, 2021

The Anisotropic Part of a Quadratic Form over a Global Function Field.
Proceedings of the ISSAC '21: International Symposium on Symbolic and Algebraic Computation, 2021

2020
CQF Magma package.
ACM Commun. Comput. Algebra, 2020

2019
Intrinsic Factorization of Ideals in Dedekind Domains.
Fundam. Informaticae, 2019

2018
Corrigendum to "Faster algorithms for computing Hong's bound on absolute positiveness" [J. Symb. Comput. 45 (2010) 677-683].
J. Symb. Comput., 2018

Computing with quadratic forms over number fields.
J. Symb. Comput., 2018

2017
Roots Multiplicity without Companion Matrices.
Fundam. Informaticae, 2017

2016
A note about "Faster algorithms for computing Hong's bound on absolute positiveness" by K. Mehlhorn and S. Ray.
CoRR, 2016

2008
Algorithms for quadratic forms.
J. Symb. Comput., 2008


  Loading...