Pramod Kumar Kewat
Orcid: 0000-0002-2483-0960
According to our database1,
Pramod Kumar Kewat
authored at least 22 papers
between 2012 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
Maximum distance separable repeated-root constacyclic codes over $\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}$ with respect to the Lee distance.
Appl. Algebra Eng. Commun. Comput., July, 2024
Symbol-pair distance of some repeated-root constacyclic codes of length p<sup>s</sup> over the Galois ring ${{\, \mathrm{GR}\, }}(p^a, m)$.
Appl. Algebra Eng. Commun. Comput., 2024
2023
Two classes of few-Lee weight Z2[u]-linear codes using simplicial complexes and minimal codes via Gray map.
Discret. Math., December, 2023
Binary self-dual codes and Jacobi forms over a totally real subfield of ${\mathbb {Q}}(\zeta _8)$.
Appl. Algebra Eng. Commun. Comput., May, 2023
Proceedings of the IEEE International Symposium on Information Theory, 2023
2022
Lee distance distribution of repeated-root constacyclic codes over $$\hbox {GR}\left( 2^e,m\right) $$ and related MDS codes.
J. Appl. Math. Comput., December, 2022
Self-dual constacyclic codes of length $$2^s$$ over the ring $$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$.
J. Appl. Math. Comput., February, 2022
A class of few-Lee weight Z<sub>2</sub>[u]-linear codes using simplicial complexes and minimal codes via Gray map.
CoRR, 2022
2021
J. Appl. Math. Comput., October, 2021
Lee Distance of (4z - 1)-Constacyclic Codes of Length 2<sup>s</sup> Over the Galois Ring GR(2<sup>a</sup>, m).
IEEE Commun. Lett., 2021
Lee distance of cyclic and (1 + <i>uγ</i>)-constacyclic codes of length 2<sup><i>s</i></sup> over F2m+uF2m.
Discret. Math., 2021
Self-dual codes over ${\mathbb {F}}_2[u]/\langle u^4 \rangle $ and Jacobi forms over a totally real subfield of ${\mathbb {Q}}(\zeta _8)$.
Des. Codes Cryptogr., 2021
2020
Discret. Math., 2020
2019
2-Adic and Linear Complexities of a Class of Whiteman's Generalized Cyclotomic Sequences of Order Four.
Int. J. Found. Comput. Sci., 2019
2017
Cyclic codes from the second class two-prime Whiteman's generalized cyclotomic sequence with order 6.
Cryptogr. Commun., 2017
2015
Cyclic codes over the ring <sub>Z</sub><sub>p</sub>[u, v]/〈u<sup>2</sup>, v<sup>2</sup>, uv-vu〉.
Finite Fields Their Appl., 2015
Des. Codes Cryptogr., 2015
Cyclic codes from the first class two-prime Whiteman's generalized cyclotomic sequence with order 6.
CoRR, 2015
Cyclic codes over the ring $\mathbb{F}_p[u, v, w]/\langle u^2, v^2, w^2, uv-vu, vw-wv, uw-wu \rangle$.
CoRR, 2015
Cyclic codes over the ring 𝔽<sub>p</sub>[u, v] / 〈u<sup>k</sup>, v<sup>2</sup>, uv-vu〉.
CoRR, 2015
2014
2012