Pramod Kumar Kewat

Orcid: 0000-0002-2483-0960

According to our database1, Pramod Kumar Kewat authored at least 22 papers between 2012 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Maximum distance separable repeated-root constacyclic codes over $\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}$ with respect to the Lee distance.
Appl. Algebra Eng. Commun. Comput., July, 2024

Symbol-pair distance of some repeated-root constacyclic codes of length p<sup>s</sup> over the Galois ring ${{\, \mathrm{GR}\, }}(p^a, m)$.
Appl. Algebra Eng. Commun. Comput., 2024

2023
Two classes of few-Lee weight Z2[u]-linear codes using simplicial complexes and minimal codes via Gray map.
Discret. Math., December, 2023

Binary self-dual codes and Jacobi forms over a totally real subfield of ${\mathbb {Q}}(\zeta _8)$.
Appl. Algebra Eng. Commun. Comput., May, 2023

CSS codes and QSCs from Whiteman's Generalized Cyclotomy of order four.
Proceedings of the IEEE International Symposium on Information Theory, 2023

2022
Lee distance distribution of repeated-root constacyclic codes over $$\hbox {GR}\left( 2^e,m\right) $$ and related MDS codes.
J. Appl. Math. Comput., December, 2022

Self-dual constacyclic codes of length $$2^s$$ over the ring $$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$.
J. Appl. Math. Comput., February, 2022

A class of few-Lee weight Z<sub>2</sub>[u]-linear codes using simplicial complexes and minimal codes via Gray map.
CoRR, 2022

2021
Constacyclic codes of length $$(p^r,p^s)$$ over mixed alphabets.
J. Appl. Math. Comput., October, 2021

Lee Distance of (4z - 1)-Constacyclic Codes of Length 2<sup>s</sup> Over the Galois Ring GR(2<sup>a</sup>, m).
IEEE Commun. Lett., 2021

Lee distance of cyclic and (1 + <i>uγ</i>)-constacyclic codes of length 2<sup><i>s</i></sup> over F2m+uF2m.
Discret. Math., 2021

Self-dual codes over ${\mathbb {F}}_2[u]/\langle u^4 \rangle $ and Jacobi forms over a totally real subfield of ${\mathbb {Q}}(\zeta _8)$.
Des. Codes Cryptogr., 2021

2020
On constacyclic codes of length ps over Fpm[u, v]∕〈u2, v2, uv-vu〉.
Discret. Math., 2020

2019
2-Adic and Linear Complexities of a Class of Whiteman's Generalized Cyclotomic Sequences of Order Four.
Int. J. Found. Comput. Sci., 2019

2017
Cyclic codes from the second class two-prime Whiteman's generalized cyclotomic sequence with order 6.
Cryptogr. Commun., 2017

2015
Cyclic codes over the ring <sub>Z</sub><sub>p</sub>[u, v]/〈u<sup>2</sup>, v<sup>2</sup>, uv-vu〉.
Finite Fields Their Appl., 2015

On cyclic codes over the ring Z<sub>p</sub>[u] / 〈u<sup>k</sup>〉.
Des. Codes Cryptogr., 2015

Cyclic codes from the first class two-prime Whiteman's generalized cyclotomic sequence with order 6.
CoRR, 2015

Cyclic codes over the ring $\mathbb{F}_p[u, v, w]/\langle u^2, v^2, w^2, uv-vu, vw-wv, uw-wu \rangle$.
CoRR, 2015

Cyclic codes over the ring 𝔽<sub>p</sub>[u, v] / 〈u<sup>k</sup>, v<sup>2</sup>, uv-vu〉.
CoRR, 2015

2014
Cyclic codes over the ring $ \Z_p[u, v]/\langle u^2, v^2, uv-vu\rangle$.
CoRR, 2014

2012
On cyclic codes over the ring $Z_p + uZ_p + ... + u^{k-1}Z_p$
CoRR, 2012


  Loading...