Piotr Zgliczynski
Orcid: 0000-0002-4852-0887
According to our database1,
Piotr Zgliczynski
authored at least 25 papers
between 2001 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
High-Order Lohner-Type Algorithm for Rigorous Computation of Poincaré Maps in Systems of Delay Differential Equations with Several Delays.
Found. Comput. Math., August, 2024
2022
Commun. Nonlinear Sci. Numer. Simul., 2022
Commun. Nonlinear Sci. Numer. Simul., 2022
2021
CAPD: : DynSys: A flexible C++ toolbox for rigorous numerical analysis of dynamical systems.
Commun. Nonlinear Sci. Numer. Simul., 2021
2018
Algorithm for Rigorous Integration of Delay Differential Equations and the Computer-Assisted Proof of Periodic Orbits in the Mackey-Glass Equation.
Found. Comput. Math., 2018
2017
J. Complex., 2017
Real-number Computability from the Perspective of Computer Assisted Proofs in Analysis.
CoRR, 2017
2016
SIAM J. Appl. Dyn. Syst., 2016
Existence of Periodic Solutions of the FitzHugh-Nagumo Equations for an Explicit Range of the Small Parameter.
SIAM J. Appl. Dyn. Syst., 2016
J. Complex., 2016
J. Autom. Reason., 2016
2015
Existence of Globally Attracting Solutions for One-Dimensional Viscous Burgers Equation with Nonautonomous Forcing - A Computer Assisted Proof.
SIAM J. Appl. Dyn. Syst., 2015
2013
SIAM J. Appl. Dyn. Syst., 2013
2011
Satisfiability of Systems of Equations of Real Analytic Functions Is Quasi-decidable.
Proceedings of the Mathematical Foundations of Computer Science 2011, 2011
2009
Computer Assisted Proof of the Existence of Homoclinic Tangency for the Hénon Map and for the Forced Damped Pendulum.
SIAM J. Appl. Dyn. Syst., 2009
Found. Comput. Math., 2009
2007
Infinite Dimensional Krawczyk Operator for Finding Periodic orbits of Discrete Dynamical Systems.
Int. J. Bifurc. Chaos, 2007
2004
Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto-Sivashinsky PDE-A Computer-Assisted Proof.
Found. Comput. Math., 2004
2002
Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof.
SIAM J. Appl. Dyn. Syst., 2002
2001
Int. J. Bifurc. Chaos, 2001
Rigorous Numerics for Partial Differential Equations: The Kuramoto-Sivashinsky Equation.
Found. Comput. Math., 2001