Pingzhi Yuan
Orcid: 0000-0001-6398-0614
According to our database1,
Pingzhi Yuan
authored at least 53 papers
between 2007 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
The compositional inverses of three classes of permutation polynomials over finite fields.
Finite Fields Their Appl., 2025
2024
Permutation polynomials and their compositional inverses over finite fields by a local method.
Des. Codes Cryptogr., February, 2024
Finite Fields Their Appl., January, 2024
2023
2022
Compositional inverses of AGW-PPs -dedicated to professor cunsheng ding for his 60th birthday.
Adv. Math. Commun., 2022
Appl. Math. Comput., 2022
Appl. Algebra Eng. Commun. Comput., 2022
Correction to: Some classes of permutation polynomials of the form $b(x^q+ax+\delta )^{\frac{i(q^2-1)}{d}+1}+c(x^q+ax+\delta )^{\frac{j(q^2-1)}{d}+1}+L(x)$ over 픽<sub>q<sup>2</sup></sub>.
Appl. Algebra Eng. Commun. Comput., 2022
Some classes of permutation polynomials of the form $b(x^q+ax+\delta )^{\frac{i(q^2-1)}{d}+1}+c(x^q+ax+\delta )^{\frac{j(q^2-1)}{d}+1}+L(x)$ over $ {{{\mathbb {F}}}}_{q^2}$.
Appl. Algebra Eng. Commun. Comput., 2022
2021
2020
Electron. J. Comb., 2020
2019
Proceedings of the Ninth International Workshop on Signal Design and its Applications in Communications, 2019
2018
J. Appl. Math., 2018
Des. Codes Cryptogr., 2018
2017
Finite Fields Their Appl., 2017
2016
Des. Codes Cryptogr., 2016
2015
SIAM J. Discret. Math., 2015
Finite Fields Their Appl., 2015
2014
Corrigenda to "Permutation polynomials over finite fields from a powerful lemma" [Finite Fields Appl. 17(2011) 560-574], "Further results on permutation polynomials over finite fields" [Finite Fields Appl. 27 (2014) 88-103], "Permutation polynomials of the form L(x) + S<sup>a</sup><sub>2k</sub> + S<sup>b</sup><sub>2k</sub> over 𝔽<sub>q<sup>3k</sup></sub>" [Finite Fields Appl. 29 (2014) 106-117].
Finite Fields Their Appl., 2014
Permutation polynomials of the form L(x) + S<sup>a</sup><sub>2k</sub> + S<sup>b</sup><sub>2k</sub> over 𝔽<sub>q<sup>3k</sup></sub>.
Finite Fields Their Appl., 2014
Finite Fields Their Appl., 2014
Subsequence Sums Of Zero-Sum Free Sequences II.
Ars Comb., 2014
2013
Proceedings of the 2013 5th International Conference on Intelligent Networking and Collaborative Systems, 2013
2012
2011
Finite Fields Their Appl., 2011
Comput. Math. Appl., 2011
2010
Finite Fields Their Appl., 2010
Discret. Math., 2010
2009
2008
2007
J. Comb. Theory A, 2007
The k-exponents of Primitive, Nearly Reducible Matrices.
Ars Comb., 2007
The generalized exponent sets of primitive, minimally strong digraphs (I).
Ars Comb., 2007