Petr Knobloch

Orcid: 0000-0003-2709-5882

According to our database1, Petr Knobloch authored at least 27 papers between 2002 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Finite Element Methods Respecting the Discrete Maximum Principle for Convection-Diffusion Equations.
SIAM Rev., February, 2024

Flux-corrected transport stabilization of an evolutionary cross-diffusion cancer invasion model.
J. Comput. Phys., February, 2024

Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations.
J. Comput. Phys., 2024

2023
An algebraically stabilized method for convection-diffusion-reaction problems with optimal experimental convergence rates on general meshes.
Numer. Algorithms, October, 2023

A Numerical Assessment of Finite Element Discretizations for Convection-Diffusion-Reaction Equations Satisfying Discrete Maximum Principles.
Comput. Methods Appl. Math., October, 2023

Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations.
SIAM J. Sci. Comput., August, 2023

A posteriori optimization of parameters in stabilized methods for convection-diffusion problems - Part II.
J. Comput. Appl. Math., August, 2023

2022
On algebraically stabilized schemes for convection-diffusion-reaction problems.
Numerische Mathematik, 2022

Global existence of classical solutions and numerical simulations of a cancer invasion model.
CoRR, 2022

2021
On the solvability of the nonlinear problems in an algebraically stabilized finite element method for evolutionary transport-dominated equations.
Math. Comput., 2021

Importance of parameter optimization in a nonlinear stabilized method adding a crosswind diffusion.
J. Comput. Appl. Math., 2021

Existence of solutions of a finite element flux-corrected-transport scheme.
Appl. Math. Lett., 2021

2019
On error indicators for optimizing parameters in stabilized methods.
Adv. Comput. Math., 2019

A New Algebraically Stabilized Method for Convection-Diffusion-Reaction Equations.
Proceedings of the Numerical Mathematics and Advanced Applications ENUMATH 2019 - European Conference, Egmond aan Zee, The Netherlands, September 30, 2019

2018
Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?
Comput. Vis. Sci., 2018

Adaptive techniques in SOLD methods.
Appl. Math. Comput., 2018

2017
Isogeometric analysis for flows around a cylinder.
Appl. Math. Lett., 2017

2016
Analysis of Algebraic Flux Correction Schemes.
SIAM J. Numer. Anal., 2016

2010
A Generalization of the Local Projection Stabilization for Convection-Diffusion-Reaction Equations.
SIAM J. Numer. Anal., 2010

Numerical Solution of Convection-Diffusion Equations Using a Nonlinear Method of Upwind Type.
J. Sci. Comput., 2010

2009
On a Variant of the Local Projection Method Stable in the SUPG Norm.
Kybernetika, 2009

Czech-Japanese Seminar in Applied Mathematics 2008.
Kybernetika, 2009

On the choice of the SUPG parameter at outflow boundary layers.
Adv. Comput. Math., 2009

2007
On the performance of SOLD methods for convection-diffusion problems with interior layers.
Int. J. Comput. Sci. Math., 2007

2006
On the inf-sup Condition for the <i>P</i><sup><i>mod</i></sup><sub><i>3</i></sub> / <i>P</i><sup><i>disc</i></sup><sub><i>2</i></sub> Element.
Computing, 2006

2003
The <i>P</i><sub>1</sub><sup>mod</sup> Element: A New Nonconforming Finite Element for Convection-Diffusion Problems.
SIAM J. Numer. Anal., 2003

2002
Non-Nested Multi-Level Solvers for Finite Element Discretisations of Mixed Problems.
Computing, 2002


  Loading...