Peter Schorn

According to our database1, Peter Schorn authored at least 18 papers between 1988 and 2019.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2019
Dirichlet's proof of the three-square theorem: An algorithmic perspective.
Math. Comput., 2019

1994
Evolution of a Software System: Interaction, Interfaces and Applications in the XYZ GeoBench.
J. Symb. Comput., 1994

Degeneracy in Geometric Computation and the Perturbation Approach.
Comput. J., 1994

Testing the Convexity of a Polygon.
Proceedings of the Graphics Gems, 1994

1993
An Axiomatic Approach to Robust Geometric Programs.
J. Symb. Comput., 1993

Numerik des Chaos oder Chaos der Numerik? Über die Aussagekraft von Bildern - Overflow.
Inform. Spektrum, 1993

1992
An All-Round Sweep Algorithm for 2-Dimensional Nearest-Neighbor Problems.
Acta Informatica, 1992

The XYZ GeoBench for the Experimental Evaluation of Geometric.
Proceedings of the Computational Support for Discrete Mathematics, 1992

1991
Implementing the XYZ GeoBench: A Programming Environment for Geometric Algorithms.
Proceedings of the Computational Geometry, 1991

XYZ: A Project in Experimental Geometric Computation.
Proceedings of the Computational Geometry, 1991

Robust algorithms in a program library for geometric computation.
Informatik-Dissertationen ETH Zürich 32, Verl. d. Fachvereine, 1991

1989
Wie wachsen Quad-Bäume? Overflow.
Inform. Spektrum, 1989

1988
A Canonical Simplifier for Trigonometric Expressions in the Kinematic Equation.
Inf. Process. Lett., 1988

Plane-Sweep Solves the Closest Pair Problem Elegantly.
Inf. Process. Lett., 1988

Geradenprobleme mit superlinearem Wachstum - Overflow.
Inform. Spektrum, 1988

Das Rätsel der verzopften Geraden - Overflow.
Inform. Spektrum, 1988

A Sweep Algorithm and its Implementation: The All-Nearest-Neighbors Problem Revisited.
Proceedings of the Graph-Theoretic Concepts in Computer Science, 1988

A Sweep Algorithm for the All-Nearest-Neighbors Problem.
Proceedings of the Computational Geometry and its Applications, 1988


  Loading...