Peter Monk
Orcid: 0000-0002-6539-5897Affiliations:
- University of Delaware, Newark, DE, USA
According to our database1,
Peter Monk
authored at least 57 papers
between 1992 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
On csauthors.net:
Bibliography
2024
An HDG and CG Method for the Indefinite Time-Harmonic Maxwell's Equations Under Minimal Regularity.
J. Sci. Comput., November, 2024
2023
A High-Order Ultra-Weak Variational Formulation for Electromagnetic Waves Utilizing Curved Elements.
CoRR, 2023
2022
Hybridization of the rigorous coupled-wave approach with transformation optics for electromagnetic scattering by a surface-relief grating.
J. Comput. Appl. Math., 2022
J. Comput. Appl. Math., 2022
The Time Domain Linear Sampling Method for Determining the Shape of Multiple Scatterers Using Electromagnetic Waves.
Comput. Methods Appl. Math., 2022
2021
Synthesis Lectures on Electromagnetics, Morgan & Claypool Publishers, ISBN: 978-3-031-02024-7, 2021
L<sup>∞</sup> Norm Error Estimates for HDG Methods Applied to the Poisson Equation with an Application to the Dirichlet Boundary Control Problem.
SIAM J. Numer. Anal., 2021
J. Comput. Appl. Math., 2021
The Time Domain Linear Sampling Method for Determining the Shape of a Scatterer using Electromagnetic Waves.
CoRR, 2021
2020
SIAM J. Math. Anal., 2020
Corrigendum to "Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells" [J. Comput. Phys. 407 (2020) 109242].
J. Comput. Phys., 2020
Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells.
J. Comput. Phys., 2020
J. Comput. Appl. Math., 2020
HDG and CG methods for the Indefinite Time-Harmonic Maxwell's Equations under minimal regularity.
CoRR, 2020
Proceedings of the 75 Years of Mathematics of Computation, 2020
2019
J. Sci. Comput., 2019
Determination of electromagnetic Bloch variety in a medium with frequency-dependent coefficients.
J. Comput. Appl. Math., 2019
2018
A plane wave discontinuous Galerkin method with a Dirichlet-to-Neumann boundary condition for the scattering problem in acoustics.
J. Comput. Appl. Math., 2018
2017
SIAM J. Math. Anal., 2017
2016
SIAM J. Appl. Math., 2016
2015
SIAM J. Sci. Comput., 2015
2014
Discretization of the Time Domain CFIE for Acoustic Scattering Problems Using Convolution Quadrature.
SIAM J. Math. Anal., 2014
Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space.
J. Sci. Comput., 2014
J. Comput. Phys., 2014
Comput. Methods Appl. Math., 2014
2012
SIAM J. Sci. Comput., 2012
2011
Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation.
J. Sci. Comput., 2011
2008
2007
J. Comput. Phys., 2007
2006
Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation.
J. Sci. Comput., 2006
2005
Existence, Uniqueness, and Variational Methods for Scattering by Unbounded Rough Surfaces.
SIAM J. Math. Anal., 2005
SIAM J. Appl. Math., 2005
A Discontinuous Galerkin Method for Linear Symmetric Hyperbolic Systems in Inhomogeneous Media.
J. Sci. Comput., 2005
2004
SIAM J. Sci. Comput., 2004
2003
The Linear Sampling Method for Solving the Electromagnetic Inverse Scattering Problem.
SIAM J. Sci. Comput., 2003
2002
Error Analysis of a Finite Element-Integral Equation Scheme for Approximating the Time-Harmonic Maxwell System.
SIAM J. Numer. Anal., 2002
A finite element method for approximating electromagnetic scattering from a conducting object.
Numerische Mathematik, 2002
2001
Math. Comput., 2001
2000
A Regularized Sampling Method for Solving Three-Dimensional Inverse Scattering Problems.
SIAM J. Sci. Comput., 2000
Scattering of Time-Harmonic Electromagnetic Waves by Anisotropic Inhomogeneous Scatterers or Impenetrable Obstacles.
SIAM J. Numer. Anal., 2000
1999
SIAM J. Appl. Math., 1999
1998
Corrigendum: A Finite Element/Spectral Method for Approximating the Time-Harmonic Maxwell System in ℝ<sup>3</sup>.
SIAM J. Appl. Math., 1998
SIAM J. Appl. Math., 1998
1995
A Finite Element/Spectral Method for Approximating the Time-Harmonic Maxwell System in ℝ<sup>3</sup>.
SIAM J. Appl. Math., 1995
1994
SIAM J. Sci. Comput., 1994
1993
SIAM J. Appl. Math., 1993
1992
SIAM J. Sci. Comput., 1992