Paul N. Swarztrauber

According to our database1, Paul N. Swarztrauber authored at least 18 papers between 1975 and 2004.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2004
Spherical harmonic projectors.
Math. Comput., 2004

The Communication Machine.
Int. J. High Speed Comput., 2004

2003
On Computing the Points and Weights for Gauss-Legendre Quadrature.
SIAM J. Sci. Comput., 2003

2002
The Convergence of Spectral and Finite Difference Methods for Initial-Boundary Value Problems.
SIAM J. Sci. Comput., 2002

Climate modeling.
Comput. Sci. Eng., 2002

2001
A comparison of optimal FFTs on torus and hypercube multicomputers.
Parallel Comput., 2001

2000
The Vector Multiprocessor.
Int. J. High Speed Comput., 2000

1998
Transposing Arrays on Multicomputers Using de Bruijn Sequences.
J. Parallel Distributed Comput., 1998

1995
Efficient Detection of a Continuous-Wave Signal with a Linear Frequency Drift.
SIAM J. Sci. Comput., 1995

1994
A Fast Method for the Numerical Evaluation of Continuous Fourier and Laplace Transforms.
SIAM J. Sci. Comput., 1994

1991
The Fractional Fourier Transform and Applications.
SIAM Rev., 1991

Bluestein's FFT for arbitrary N on the hypercube.
Parallel Comput., 1991

Ordered Fast Fourier Transforms on a Massively Parallel Hypercube Multiprocessor.
J. Parallel Distributed Comput., 1991

1988
Benchmarking the connection machine 2.
Proceedings of the Proceedings Supercomputing '88, Orlando, FL, USA, November 12-17, 1988, 1988

1987
Multiprocessor FFTs.
Parallel Comput., 1987

1984
FFT algorithms for vector computers.
Parallel Comput., 1984

1979
Algorithm 541: Efficient Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations [D3].
ACM Trans. Math. Softw., 1979

1975
Efficient FORTRAN subprograms for the solution of elliptic partial differential equations.
Proceedings of the SIGNUM Meeting on Software for Partial Differential Equations, 1975


  Loading...