Paul M. Terwilliger

Orcid: 0000-0003-0942-5489

Affiliations:
  • University of Wisconsin, Department of Mathematics, Madison, WI, USA


According to our database1, Paul M. Terwilliger authored at least 47 papers between 1982 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
Spin models and distance-regular graphs of q-Racah type.
Eur. J. Comb., 2025

Projective geometries, Q-polynomial structures, and quantum groups.
Discret. Math., 2025

2024
A Q-polynomial structure for the Attenuated Space poset Aq(N,M).
J. Comb. Theory, Ser. A, 2024

2023
A Q-Polynomial Structure Associated with the Projective Geometry L<sub>N(q)</sub>.
Graphs Comb., August, 2023

Tridiagonal pairs, alternating elements, and distance-regular graphs.
J. Comb. Theory A, May, 2023

Using a q-shuffle algebra to describe the basic module V(Λ_0) for the quantized enveloping algebra Uq(sl^2).
Ars Math. Contemp., March, 2023

2022
A compact presentation for the alternating central extension of the positive part of Uq(sl^2).
Ars Math. Contemp., 2022

2021
The Norton algebra of a <i>Q</i>-polynomial distance-regular graph.
J. Comb. Theory A, 2021

Leonard pairs, spin models, and distance-regular graphs.
J. Comb. Theory A, 2021

Connectivity concerning the last two subconstituents of a <i>Q</i>-polynomial distance-regular graph.
J. Comb. Theory A, 2021

Notes on the Leonard System Classification.
Graphs Comb., 2021

2019
The quantum adjacency algebra and subconstituent algebra of a graph.
J. Comb. Theory A, 2019

2018
Tridiagonal pairs of q-Racah type, the Bockting operator ψ, and L-operators for U<sub>q</sub>(L(sl<sub>2</sub>)).
Ars Math. Contemp., 2018

2014
Distance-regular graphs of q-Racah type and the universal Askey-Wilson algebra.
J. Comb. Theory A, 2014

2013
Augmented down-up algebras and uniform posets.
Ars Math. Contemp., 2013

2010
The Q-polynomial idempotents of a distance-regular graph.
J. Comb. Theory B, 2010

Distance-regular graphs with light tails.
Eur. J. Comb., 2010

2009
Distance-regular graphs and the q-tetrahedron algebra.
Eur. J. Comb., 2009

2008
The subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two.
Discret. Math., 2008

2007
Almost-bipartite distance-regular graphs with the Q-polynomial property.
Eur. J. Comb., 2007

2006
Taut distance-regular graphs and the subconstituent algebra.
Discret. Math., 2006

2005
The Displacement and Split Decompositions for a Q-Polynomial Distance-regular Graph.
Graphs Comb., 2005

An inequality for regular near polygons.
Eur. J. Comb., 2005

The Terwilliger algebra of an almost-bipartite P- and Q-polynomial association scheme.
Discret. Math., 2005

Two Linear Transformations each Tridiagonal with Respect to an Eigenbasis of the other; Comments on the Parameter Array.
Des. Codes Cryptogr., 2005

2004
Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra.
Eur. J. Comb., 2004

2003
Preface.
Discret. Math., 2003

2002
Tight Distance-regular Graphs and the Subconstituent Algebra<sup>*1</sup>.
Eur. J. Comb., 2002

1999
Some algebra related to <i>P</i>- and <i>Q</i>-polynomial association schemes.
Proceedings of the Codes and Association Schemes, 1999

1996
Dual Bipartite Q-polynomial Distance-regular Graphs.
Eur. J. Comb., 1996

On Garsia-Remmel problem of rook equivalence.
Discret. Math., 1996

1995
Kite-free distance-regular graphs.
Eur. J. Comb., 1995

A new inequality for distance-regular graphs.
Discret. Math., 1995

1993
P- and Q-Polynomial Association Schemes and Their Antipodal P-Polynomial Covers.
Eur. J. Comb., 1993

1988
Balanced sets and<i>Q</i>-polynomial association schemes.
Graphs Comb., 1988

The classification of distance-regular graphs of type IIB.
Comb., 1988

1987
<i>P</i> and <i>Q</i> polynomial schemes with <i>q</i> = -1.
J. Comb. Theory B, 1987

A characterization of <i>P-</i> and <i>Q</i>-polynomial association schemes.
J. Comb. Theory A, 1987

The classification of finite connected hypermetric spaces.
Graphs Comb., 1987

Root Systems and The Johnson and Hamming Graphs.
Eur. J. Comb., 1987

1986
A class of distance-regular graphs that are <i>Q</i>-polynomial.
J. Comb. Theory B, 1986

A new feasibility condition for distance-regular graphs.
Discret. Math., 1986

The Johnson graph J(d, r) is unique if (d, r) != (2, 8).
Discret. Math., 1986

1985
Distance-regular graphs with girth 3 or 4: I.
J. Comb. Theory B, 1985

1983
Distance-regular graphs and (<i>s, c, a, k</i>)-graphs.
J. Comb. Theory B, 1983

1982
The diameter of bipartite distance-regular graphs.
J. Comb. Theory B, 1982

Eigenvalue multiplicities of highly symmetric graphs.
Discret. Math., 1982


  Loading...