Patricia Yanguas

Orcid: 0000-0001-9767-5554

According to our database1, Patricia Yanguas authored at least 15 papers between 2000 and 2021.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of six.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2021
Nonlinear Stability in the Spatial Attitude Motion of a Satellite in a Circular Orbit.
SIAM J. Appl. Dyn. Syst., 2021

Magnetic confinement of a neutral atom in a double-wire waveguide: A nonlinear dynamics approach.
Commun. Nonlinear Sci. Numer. Simul., 2021

2019
On Co-Orbital Quasi-Periodic Motion in the Three-Body Problem.
SIAM J. Appl. Dyn. Syst., 2019

Effects of a soft-core coulomb potential on the dynamics of a hydrogen atom near a metal surface.
Commun. Nonlinear Sci. Numer. Simul., 2019

2018
Dynamics of Axially Symmetric Perturbed Hamiltonians in 1: 1: 1 Resonance.
J. Nonlinear Sci., 2018

2017
Periodic Solutions and KAM Tori in a Triaxial Potential.
SIAM J. Appl. Dyn. Syst., 2017

2015
Lyapunov stability for a generalized Hénon-Heiles system in a rotating reference frame.
Appl. Math. Comput., 2015

2011
Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori.
SIAM J. Appl. Dyn. Syst., 2011

2008
Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem.
SIAM J. Appl. Dyn. Syst., 2008

2006
Approximating the Invariant Sets of a Finite Straight Segment near Its Collinear Equilibria.
SIAM J. Appl. Dyn. Syst., 2006

2005
A Universal Procedure for Normalizing n-Degree-of-Freedom Polynomial Hamiltonian Systems.
SIAM J. Appl. Math., 2005

Asymptotic invariant tori of perturbed two-body problems.
J. Symb. Comput., 2005

2001
Periodic orbits of the Lorenz System through perturbation Theory.
Int. J. Bifurc. Chaos, 2001

2000
Reduction of Polynomial Planar Hamiltonians with Quadratic Unperturbed Part.
SIAM Rev., 2000

Hamiltonian Oscillators in 1 - 1 - 1 Resonance: Normalization and Integrability.
J. Nonlinear Sci., 2000


  Loading...