Om Prakash

Orcid: 0000-0002-6512-4229

Affiliations:
  • Indian Institute of Technology Patna, Department of Mathematics, India


According to our database1, Om Prakash authored at least 50 papers between 2017 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes.
Comput. Appl. Math., July, 2024

Structure of ${\mathbb {F}}_q{\mathcal {R}}$-linear $(\varTheta ,\varDelta _\varTheta )$-cyclic codes.
Comput. Appl. Math., April, 2024

Construction of quantum codes from (γ, Δ)-cyclic codes.
CoRR, 2024

Double skew cyclic codes over F<sub>q</sub>+vF<sub>q</sub>.
CoRR, 2024

New Quantum Codes and (θ, δ, β)-Cyclic Codes.
IEEE Access, 2024

2023
Quantum and LCD codes from skew constacyclic codes over a finite non-chain ring.
Quantum Inf. Process., May, 2023

DNA Code from Cyclic and Skew Cyclic Codes over F4[v]/⟨v3⟩.
Entropy, February, 2023

Construction of (σ, δ)-cyclic codes over a non-chain ring and their applications in DNA codes.
CoRR, 2023

F<sub>q</sub>R-skew cyclic codes and their application to quantum codes.
CoRR, 2023

Correction to: Galois hulls of constacyclic codes over finite fields.
Cryptogr. Commun., 2023

Galois hulls of constacyclic codes over finite fields.
Cryptogr. Commun., 2023

New quantum codes from skew constacyclic codes.
Adv. Math. Commun., 2023

On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes.
Adv. Math. Commun., 2023

2022
Self-dual and LCD double circulant codes over a class of non-local rings.
Comput. Appl. Math., September, 2022

A family of constacyclic codes over a class of non-chain rings $${\mathcal {A}}_{q,r}$$ and new quantum codes.
J. Appl. Math. Comput., August, 2022

Reversible cyclic codes over a class of chain rings and their application to DNA codes.
Int. J. Inf. Coding Theory, 2022

Skew cyclic codes over 픽q[u, v, w]/〈u2 - 1, v2 - 1, w2 - 1, uv - vu, vw - wv, wu - uw〉.
Discret. Math. Algorithms Appl., 2022

Pancyclic zero divisor graph over the ring ℤn[i].
Discret. Math. Algorithms Appl., 2022

(θ , δ <sub>θ</sub> )-Cyclic codes over $\mathbb {F}_q[u, v]/\langle u^2-u, v^2-v, uv-vu \rangle $.
Des. Codes Cryptogr., 2022

Quantum Codes from additive constacyclic codes over a mixed alphabet and the MacWilliams identities.
CoRR, 2022

Correction to: Cyclic codes over $M_{4} (\mathbb {F}_{2}+u\mathbb {F}_{2})$.
Cryptogr. Commun., 2022

Cyclic codes over $M_4 (\mathbb {F}_2+u\mathbb {F}_2)$.
Cryptogr. Commun., 2022

Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring.
Cryptogr. Commun., 2022

New quantum codes from constacyclic codes over the ring R<sub>k, m</sub>.
Adv. Math. Commun., 2022

Quantum codes construction from skew polycyclic codes.
Proceedings of the IEEE International Symposium on Information Theory, 2022

2021
Self-dual and LCD double circulant and double negacirculant codes over $${\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$.
J. Appl. Math. Comput., October, 2021

New quantum codes from constacyclic codes over a non-chain ring.
Quantum Inf. Process., 2021

Cyclic codes over a non-chain ring <i>R</i><sub><i>e</i>, <i>q</i></sub> and their application to LCD codes.
Discret. Math., 2021

Cyclic codes over a non-chain ring R<sub>e, q</sub> and their application to LCD codes.
CoRR, 2021

Reversible cyclic codes over some finite rings and their application to DNA codes.
Comput. Appl. Math., 2021

New $${\mathbb {Z}}_4$$ codes from constacyclic codes over a non-chain ring.
Comput. Appl. Math., 2021

ℤ<sub>4</sub>ℤ<sub>4</sub>[u]-additive cyclic and constacyclic codes.
Adv. Math. Commun., 2021

2020
New quantum codes from constacyclic and additive constacyclic codes.
Quantum Inf. Process., 2020

Repeated-root bidimensional (<i>μ</i>, <i>ν</i>)-constacyclic codes of length 4<i>p</i><sup><i>t</i></sup>.2<sup><i>r</i></sup>.
Int. J. Inf. Coding Theory, 2020

A family of constacyclic codes over <sub><i>p<sup>m</sup></i></sub> [<i>υ</i>, <i>w</i>]/〈<i>υ</i><sup>2</sup> - 1, <i>w</i><sup>2</sup> - 1, <i>υw</i> - <i>wυ</i>〉.
Int. J. Inf. Coding Theory, 2020

New non-binary quantum codes from skew constacyclic codes over the ring F<sub>p<sup>m</sup></sub>+v{F<sub>p<sup>m</sup></sub>+v<sup>2</sup>F<sub>p<sup>m</sup></sub>.
CoRR, 2020

Quantum codes from skew constacyclic codes over Fp<sup>m</sup> + vFp<sup>m</sup> + v<sup>2</sup>Fp<sup>m</sup>.
Proceedings of the Algebraic and Combinatorial Coding Theory, 2020

2019
Quantum codes from the cyclic codes over $$\mathbb {F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1,uv-vu,vw-wv,wu-uw\rangle $$ F p [ u , v , w ] / ⟨ u 2 - 1 , v 2 - 1 , w 2 - 1 , u v - v u , v w - w v , w u - u w ⟩.
J. Appl. Math. Comput., June, 2019

A class of constacyclic codes over $${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$ Z 4 [ u ] / ⟨ u k ⟩.
J. Appl. Math. Comput., June, 2019

A note on skew constacyclic codes over 픽q + u픽q + v픽q.
Discret. Math. Algorithms Appl., 2019

Reversible cyclic codes over F<sub>q</sub>+ u F<sub>q</sub>.
CoRR, 2019

Skew Generalized Cyclic Code over R[x<sub>1</sub>;σ<sub>1</sub>, δ<sub>1</sub>][x<sub>2</sub>;σ<sub>2</sub>, δ<sub>2</sub>].
CoRR, 2019

On ZpZp[u, v]-additive cyclic and constacyclic codes.
CoRR, 2019

2018
A study of cyclic and constacyclic codes over Z<sub>4</sub> + <i>u</i>Z<sub>4</sub> + <i>v</i>Z<sub>4</sub>.
Int. J. Inf. Coding Theory, 2018

Skew cyclic and skew (<i>α</i><sub>1</sub> + <i>uα</i><sub>2</sub> + <i>vα</i><sub>3</sub> + <i>uvα</i><sub>4</sub>)-constacyclic codes over <i>F<sub>q</sub></i> + <i>uF<sub>q</sub></i> + <i>vF<sub>q</sub></i> + <i>uvF<sub>q</sub></i>.
Int. J. Inf. Coding Theory, 2018

A study of constacyclic codes over the ring ℤ4[u]/〈u2 - 3〉.
Discret. Math. Algorithms Appl., 2018

Skew cyclic codes over F_{p}+uF_{p}+\dots +u^{k-1}F_{p}.
CoRR, 2018

2017
Energy and Wiener index of Total Graph over Ring.
Electron. Notes Discret. Math., 2017

Construction of skew cyclic and skew constacyclic codes over Fq+uFq+vFq.
CoRR, 2017

Skew cyclic codes and skew(1+u2+v3+uv4)-constacyclic codes over Fq + uFq + vFq + uvFq.
CoRR, 2017


  Loading...