Om Prakash
Orcid: 0000-0002-6512-4229Affiliations:
- Indian Institute of Technology Patna, Department of Mathematics, India
According to our database1,
Om Prakash
authored at least 50 papers
between 2017 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes.
Comput. Appl. Math., July, 2024
Structure of ${\mathbb {F}}_q{\mathcal {R}}$-linear $(\varTheta ,\varDelta _\varTheta )$-cyclic codes.
Comput. Appl. Math., April, 2024
2023
Quantum Inf. Process., May, 2023
Construction of (σ, δ)-cyclic codes over a non-chain ring and their applications in DNA codes.
CoRR, 2023
Cryptogr. Commun., 2023
Adv. Math. Commun., 2023
2022
Comput. Appl. Math., September, 2022
A family of constacyclic codes over a class of non-chain rings $${\mathcal {A}}_{q,r}$$ and new quantum codes.
J. Appl. Math. Comput., August, 2022
Reversible cyclic codes over a class of chain rings and their application to DNA codes.
Int. J. Inf. Coding Theory, 2022
Skew cyclic codes over 픽q[u, v, w]/〈u2 - 1, v2 - 1, w2 - 1, uv - vu, vw - wv, wu - uw〉.
Discret. Math. Algorithms Appl., 2022
Discret. Math. Algorithms Appl., 2022
(θ , δ <sub>θ</sub> )-Cyclic codes over $\mathbb {F}_q[u, v]/\langle u^2-u, v^2-v, uv-vu \rangle $.
Des. Codes Cryptogr., 2022
Quantum Codes from additive constacyclic codes over a mixed alphabet and the MacWilliams identities.
CoRR, 2022
Cryptogr. Commun., 2022
Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring.
Cryptogr. Commun., 2022
Adv. Math. Commun., 2022
Proceedings of the IEEE International Symposium on Information Theory, 2022
2021
Self-dual and LCD double circulant and double negacirculant codes over $${\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$.
J. Appl. Math. Comput., October, 2021
Quantum Inf. Process., 2021
Cyclic codes over a non-chain ring <i>R</i><sub><i>e</i>, <i>q</i></sub> and their application to LCD codes.
Discret. Math., 2021
Cyclic codes over a non-chain ring R<sub>e, q</sub> and their application to LCD codes.
CoRR, 2021
Comput. Appl. Math., 2021
Comput. Appl. Math., 2021
Adv. Math. Commun., 2021
2020
Quantum Inf. Process., 2020
Repeated-root bidimensional (<i>μ</i>, <i>ν</i>)-constacyclic codes of length 4<i>p</i><sup><i>t</i></sup>.2<sup><i>r</i></sup>.
Int. J. Inf. Coding Theory, 2020
A family of constacyclic codes over <sub><i>p<sup>m</sup></i></sub> [<i>υ</i>, <i>w</i>]/〈<i>υ</i><sup>2</sup> - 1, <i>w</i><sup>2</sup> - 1, <i>υw</i> - <i>wυ</i>〉.
Int. J. Inf. Coding Theory, 2020
New non-binary quantum codes from skew constacyclic codes over the ring F<sub>p<sup>m</sup></sub>+v{F<sub>p<sup>m</sup></sub>+v<sup>2</sup>F<sub>p<sup>m</sup></sub>.
CoRR, 2020
Quantum codes from skew constacyclic codes over Fp<sup>m</sup> + vFp<sup>m</sup> + v<sup>2</sup>Fp<sup>m</sup>.
Proceedings of the Algebraic and Combinatorial Coding Theory, 2020
2019
Quantum codes from the cyclic codes over $$\mathbb {F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1,uv-vu,vw-wv,wu-uw\rangle $$ F p [ u , v , w ] / ⟨ u 2 - 1 , v 2 - 1 , w 2 - 1 , u v - v u , v w - w v , w u - u w ⟩.
J. Appl. Math. Comput., June, 2019
A class of constacyclic codes over $${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$ Z 4 [ u ] / ⟨ u k ⟩.
J. Appl. Math. Comput., June, 2019
Discret. Math. Algorithms Appl., 2019
Skew Generalized Cyclic Code over R[x<sub>1</sub>;σ<sub>1</sub>, δ<sub>1</sub>][x<sub>2</sub>;σ<sub>2</sub>, δ<sub>2</sub>].
CoRR, 2019
2018
A study of cyclic and constacyclic codes over Z<sub>4</sub> + <i>u</i>Z<sub>4</sub> + <i>v</i>Z<sub>4</sub>.
Int. J. Inf. Coding Theory, 2018
Skew cyclic and skew (<i>α</i><sub>1</sub> + <i>uα</i><sub>2</sub> + <i>vα</i><sub>3</sub> + <i>uvα</i><sub>4</sub>)-constacyclic codes over <i>F<sub>q</sub></i> + <i>uF<sub>q</sub></i> + <i>vF<sub>q</sub></i> + <i>uvF<sub>q</sub></i>.
Int. J. Inf. Coding Theory, 2018
Discret. Math. Algorithms Appl., 2018
2017
Electron. Notes Discret. Math., 2017
Skew cyclic codes and skew(1+u2+v3+uv4)-constacyclic codes over Fq + uFq + vFq + uvFq.
CoRR, 2017